СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОЙ ПРОВОЛОКИ Российский патент 2015 года по МПК B32B15/02 B32B15/01 C22C1/02 C22F1/04 

Описание патента на изобретение RU2557378C2

Изобретение относится к металлургии алюминиевых сплавов, содержащих металлы, практически не растворяющиеся в твердом алюминии (железо, никель, кобальт, редкоземельные металлы, иттрий), и предназначено для изготовления проводников электрического тока в виде проволоки диаметром 0,1-0,3 мм, работающих при повышенных температурах до 250°C.

Из уровня техники известны способы получения проволоки.

Так, из описания к патенту РФ №72648 (опубликован 27.04.2008) известен способ получения алюминиевой проволоки, содержащей металлическое покрытие, выполненное плакированным из серебра. Технологический процесс изготовления проволоки с покрытием сводится к следующему. Изготавливают проволоку методом плакирования. Для этого алюминиевую заготовку в виде длинного стержня вставляют в заготовку в виде трубки, выполненной из серебра. Затем осуществляется механический обжим для образования покрытия на поверхности алюминия. Далее, полученную таким образом заготовку подвергают традиционной обработке волочением через твердосплавные фильеры до требуемого размера.

В описании к патенту Японии №10237673 (опубликован 08.09.1998) раскрыт покрытый металлом алюминиевый провод, изолированный провод, покрытый металлом, и способ получения проводов. Алюминиевый проводник с нанесенным на него металлическим слоем, поверх которого нанесен металлический слой, характеризующийся низкой теплопроводностью, и слой с высокой теплопроводностью. Металлический слой состоит из сплава цинка, никеля, меди, золота и серебра. Слой с низкой теплопроводностью состоит из никеля, хрома, железа, палладия и платины. Слой с высокой теплопроводностью состоит из сплава меди, золота, серебра, никеля и припоя.

Также известен покрытый металлом алюминиевый провод, изолированный провод, покрытый металлом, и способ получения проводов. Провод состоит из алюминиевого проводника, поверх которого гальванопокрытием нанесен слой металла, выбранного из цинка, никеля, меди, золота, серебра или сплава из перечисленных металлов, поверх этого слоя нанесен высокопроводящий металлический слой из меди, золота, серебра, никеля, припоя или сплав этих компонентов (патент Японии №10237674, опубликован 08.09.1998).

Кроме этого, известен способ получения биметаллический проволоки, заключающийся в совместном прессовании (экструзии) с последующим волочением и отжигами, применяемый в производстве медной проволоки с беспористой серебряной оболочкой. Гальваническое серебрение медной проволоки с последующим волочением и отжигом применяют в производстве проводов и кабелей (см. В.А. Мастеров, Ю.В. Саксонов, Серебро, Сплавы и биметаллы на его основе. Справочник. Москва, Металлургия, 1979, стр.275).

Данный способ принят в качестве прототипа.

Известных технических решений получения трехслойной проволоки с сердечником из алюминиевого жаропрочного сплава не обнаружено.

Недостатками биметаллической проволоки, полученной известными способами, являются: неоднородность и разрывы плакирующего слоя по длине проволоки, недостаточная удельная электропроводность, ограниченный диапазон рабочей температуры (до 100-150°C против требуемых 250°C в течение не менее 500 ч), низкая пропаиваемость (низкая прочность паяного соединения).

Техническим результатом предлагаемого решения является улучшение качества пайки, повышение удельной электропроводности и стабильности механических свойств проволоки при рабочей температуре до 250°C.

Технический результат достигается за счет получения трехслойной проволоки с сердечником из алюминиевого сплава плакированными слоями меди и серебра, способом, который заключается в том, что приготовленный при температуре 850±10°C жидкий алюминиевый сплав охлаждают до температуры твердого состояния 630°C и ниже со скоростью 0,2-0,8°C/с, после чего нагревают со скоростью, равной или большей 0,2°C/с, до температуры литья 720±10°C и отливают слитки диаметром 50-100 мм со скоростью 0,001-0,005 м/с, при этом в лунке слитка создают интенсивное круговое движение расплава и формируют заготовку, на которую наносят по меньшей мере один концентрический слой металла, выбранный из ряда: медь, серебро, бериллий, прессуют заготовку в пруток, который подвергают волочению на проволоку диаметром 0,1-0,3 мм.

При этом интенсивное круговое движение алюминиевого сплава создают с помощью гидростатического давления столба расплава этого же сплава, подаваемого в лунку через распределитель с тангенциально выполненными отверстиями.

Сердечник проволоки может быть изготовлен способом полунепрерывного литья слитка из сплавов системы А1-РЗМ, Al-Fe-Ni, Al-Si и других. В данном предложении использовали сплав Al-8% Се как наиболее жаропрочный при 250°C.

На слиток (на заготовку из слитка) наносят по меньшей мере один слой металла, выбранного из ряда: медь, серебро, титан, никель при отношении толщины каждого слоя к диаметру заготовки 0,02-0,07, в частности два слоя - один медный, а второй - серебряный, при отношении толщин соответственно 0,03-0,07 и 0,02-0,05.

В частности, слой серебра наносят на биметаллическую проволоку со слоем меди с помощью гальваностегии при температуре электролита 55-65°C, катодной плотности тока 30-80 А/м2 и времени контакта 3-5 мин.

Технологическая схема изготовления проволоки состоит из трех независимых этапов, а именно:

1) получение качественной заготовки из сплава Al - 8% Се способом полунепрерывного литья слитка;

2) изготовление трехслойной сборки (заготовки) путем последовательного надевания на сердечник (заготовку) из сплава Al - 8% Се медной втулки, а на последнюю - втулки из серебра; сборку слегка спрессовывают для плотного прилегания слоев друг к другу;

3) деформационная обработка трехслойной сборки: прессование на пруток ⌀ 12 мм и волочение прутка на проволоку диаметром 0,3-0,1 мм.

Готовая проволока состоит из сердечника (сплав Al-8% Се) среднего слоя меди и наружного слоя серебра.

Толщина каждого слоя должна быть 4-10 мкм на всей длине проволоки. Более толстый слои увеличивает плотность (г/см3) проволоки и расход серебра, а значит, и массу проволоки (кг), а при более тонком слое происходят надрывы последнего.

Для получения алюминиевой заготовки готовят сплав Al - 8% Се при температуре 850±10°C. Особенность сплава - высокое содержание водорода (до 1,5 см3/100 г), поэтому проводят «вымораживание» газа, охлаждая расплав со скоростью 0,2-0,8°C/с. Этот прием основан на известном факте понижения газосодержания с уменьшением температуры расплава, особенно при переходе в твердое состояние. Например, для алюминия при переходе из жидкого в твердое состояние газосодержание уменьшается, соответственно, с 0,69 до 0,036 см3/100 г. При скорости менее 0,2°C/с время процесса увеличивается, производительность печи снижается, а при >0,8°C/с часть водорода может не успеть уйти из расплава.

По диаграмме состояния температура плавления сплава равна 637°C, поэтому охладить сплав следует ниже; из этих соображений и выбрана температура 630°C. Нет смысла охлаждать до более низкой температуры, так как сплав уже в твердом состоянии. Теперь нужно нагреть сплав до температуры литья 720±10°C; чем быстрее, тем меньше водорода растворится вновь. Нижняя граница скорости нагрева 0,2°C/с обеспечивает время нагрева равное (720-630°C):2=450 с, а верхняя граница лимитируется только мощностью печи.

Известно, что для каждого диаметра слитка существует своя оптимальная скорость литья. Мы установили, что для ⌀ 50 мм это 0,005±0,001 м/с, а для ⌀ 100 мм - 0,002±0,0005 м/с. При меньших значениях скорости литья образуется грубая поверхность слитка («неслитины»), что увеличивает припуск на механическую обработку, а при более высокой скорости литья образуется рыхлота в центре слитка, которая сохраняется и в проволоке.

Круговое движение расплава в кристаллизаторе создают за счет гидростатического давления столба расплава, подаваемого в кристаллизатор (в жидкую лунку) через керамический распределитель с тангенциально выполненными отверстиями. Движение расплава выравнивает в объеме лунки, и дно лунки имеет плоскую форму, что позволяет получить плотную сердцевину слитка. Варианты режимов плавки и литья приведены в таблице 1.

Таблица 1 Режимы плавки и литья сплава Al - 8% Се №№ п/п Скорость охлаждения расплава, °C/с Скорость нагрева расплава, °C/с Содержание водорода, см3/100 г Скорость литья, м/с слиток ⌀ 50 мм слиток ⌀ 100 мм 1. 0,2 0,2 0,22 0,005 0,001* 2. 0,2 0,4 0,21 0,003 0,002 3. 0,8 0,5 0,25 0,001* 0,003 * Поверхность слитков с дефектами.

Лучшие результаты получены в варианте №2, поэтому в дальнейшем слитки отливали именно на этих режимах. Слитки ⌀ 50 и 100 мм разрезали на мерные заготовки, обтачивали на ⌀ 46 и 94 мм (соответственно). Каждую заготовку плотно вставляли в медную гильзу (втулку) с толщиной стенки 3,0 мм, а полученную двухслойную заготовку (сборку) в свою очередь вставляли в гильзу (втулку) из серебра, толщина стенки которой была 2,0 мм.

При необходимости толщину стенки медной и серебряной втулки можно изменять в соответствии с заданной толщиной слоев в готовой проволоке. В данном случае отношение толщины каждого слоя к диаметру трехслойной заготовки (сборки) составляет соответственно для диаметра 100 и 50 мм: для медного 0,03 и 0,06, для серебряного 0,02 и 0,04 мм (см. таблицу 2); это позволяет получить требуемую толщину слоя меди и серебра на готовой проволоке; собранную трехслойную заготовку подвергают небольшой опрессовке для плотного соприкосновения слоев.

Прессование заготовки в пруток ⌀ 12 мм осуществляют при температуре 300-350°C при скорости 0,05-0,08 м/с через конусовидную матрицу с углом 45°. Обычно алюминиевые сплавы прессуют при температуре 420-450°C; в нашем случае выбраны более низкие температуры, что позволяет сблизить значения технологической пластичности (δ, %) меди, алюминиевого сплава и серебра, а это обеспечивает равномерное истечение прутка из матрицы пресса и получение равномерных слоев меди и серебра как относительно алюминиевой сердцевины, так и друг друга. При скоростях прессования менее 0,05 м/с или выше 0,08 м/с пруток имеет неровную (дефектную) поверхность, что ухудшает качество проволоки. Поэтому в дальнейшем прессование вели на среднем значении скорости ~0,065 м/с.

Волочение прутка вели при единичном обжатии 15-20% с промежуточным отжигом при 300-350°C и выдержкой в течение 1,0-2,0 ч периодически после суммарной вытяжки 75-80%. При меньшем значении обжатия требуется более часто отжигать проволоку, что повышает трудоемкость операции. Время отжига менее 1,0 ч недостаточно: нагартовка проволоки полностью не снимается, и пластичность ее недостаточна, что приводит к обрывам. Выдержка более 2,0 часов практически эффекта не дает; наиболее подходящий режим ~1,5 ч.

Аналогичный результат наблюдали и в отношении суммарной вытяжки: при <75% снижается производительность волочильного стана (чаще отжигаем), а при >80% проволока рвется, т.к. сильно нагартовывается.

Слой серебра толщиной 4-10 мкм может быть нанесен способом гальваностегии (гальваническим способом). Для этого по вышеописанной технологии получают двухслойную проволоку диаметром 0,1-0,3 мм (с медным слоем), на поверхность которой в электролите известного состава наносят слой серебра. Равномерное покрытие серебром происходит при средних значениях параметров, а именно: температуре электролита ~60°C, катодной плотности тока ~50 А/м2 и времени контакта ~4 мин.

Примеры осуществления предлагаемого способа (таблица 2).

Пример 1. Слиток ⌀ 50 мм из сплава Al - 8% Се резали на заготовки, каждую обтачивали на ⌀ 40 мм и плотно вставляли в медную втулку ⌀ 40×46 мм, а полученную сборку вставляли в серебряную втулку ⌀ 46×50 мм; трехслойную сборку слегка осаживали (подпрессовывали). Толщина слоя меди и серебра равна соответственно 3,0 и 2,0 мм. Триметаллическую сборку прессовали на пруток ⌀ 12 мм при температуре 320°C и скорости 0,065 м/с, который волочили на ⌀ 0,3 мм при единичном обжатии 15% с промежуточным отжигом при 300°C в течение 1.5 ч после суммарной вытяжки 70%.

Металлографический анализ поперечного сечения проволоки показал, что толщина слоев меди и серебра равна соответственно 0,0065 и 0,0044 мм с максимальным отклонением на длине проволоки ±0,0003 мм.

Пример 2. Исходные материалы и технологии сборки и прессования те же, что в примере 1. Пруток ⌀ 12 мм волочили на проволоку ⌀ 0,1 мм на аналогичных условиях. Толщина слоев меди и серебра равна соответственно 0,0117 и 0,0071 мм, при отклонении толщины не более 0,0003 мм.

Пример 3. Слиток ⌀ 100 мм из сплава Al - 8% Се резали на заготовки, каждую обтачивали на ⌀ 90 мм и плотно вставляли в медную втулку ⌀ 90×96 мм; полученную сборку плотно вставляли в серебряную втулку ⌀ 96-100 мм, слегка подпрессовывали и прессовали на пруток ⌀ 12 мм. Соотношение слоев меди и серебра было соответственно 0,03 мм и 0,02 мм относительно диаметра сборки. Пруток волочили на ⌀ 0,3 мм при единичном обжатии 18% с периодическим отжигом при 300°C в течение 1,5 ч после суммарного обжатия 75%. Металлографический анализ показал, что толщина слоев меди и серебра равна соответственно 0,0064 и 0,0043 мм, отклонение по толщине на всей длине проволоки (начало, середина, конец) не превышает 0,0003 мм.

Пример 4. Исходные материалы и технологии сборки и прессования те же, что в примере 3. Пруток ⌀ 12 мм волочили на проволоку ⌀ 0,1 мм при аналогичных режимах. Толщина слоев меди и серебра равна соответственно 0,0096 и 0,0067 мм при равномерном покрытии алюминиевого сердечника на всей длине проволоки.

Таким образом применение технического решения по предлагаемому изобретению позволяет достигнуть поставленный технический результат. Для изготовления триметаллической проволоки не требуется специального оснащения оборудованием. Внедрение предлагаемого способа в промышленность позволит расширить область применения проводов для нужд специальной техники от авиакосмического назначения до общегражданского.

Таблица 2 Геометрические размеры заготовки и проволоки №№ п/п Диаметр заготовки и втулок, мм Диаметр проволоки и толщина слоев, мм Сборка Заготовка Медная втулка Серебряная втулка Отношение * слой/сборка O2 1 O1 3 медь серебро медь серебро медь серебро 1. 50 40 40×46 46×50 0,06 0,4 1,17·10-2 0,71·10-2 - - 2. 50 40 40×46 46×50 0,06 0,4 - - 0,65·10-2 0,44·10-2 3. 100 90 90×96 96×100 0,03 0,02 0,96·10-2 0,67·10-2 - - 4. 100 90 90×100 96×100 0,03 0,02 - - 0,64·10-2 0,43·10-2 Примечание: * отношение толщины слоя к внешнему диаметру сборки.

Похожие патенты RU2557378C2

название год авторы номер документа
Способ получения трёхслойной электропроводящей проволоки 2016
  • Калинин Вячеслав Викторович
  • Чепеленко Виктор Николаевич
  • Кострюкова Евгения Леонидовна
  • Курбатов Михаил Геннадьевич
  • Лебедев Владимир Николаевич
  • Исмайлов Рустам Исмайлович
  • Матвеев Юрий Александрович
RU2617756C1
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ПРОВОЛОКИ ИЗ ДРАГОЦЕННЫХ МЕТАЛЛОВ 2016
  • Сидельников Сергей Борисович
  • Дитковская Юлия Дмитриевна
  • Лопатина Екатерина Сергеевна
  • Павлов Евгений Александрович
  • Леонтьева Елена Сергеевна
  • Лебедева Ольга Сергеевна
  • Биндарева Кристина Андреевна
RU2626260C1
Высокопрочный провод и способ его изготовления 2016
  • Панцырный Виктор Иванович
  • Хлебова Наталья Евгеньевна
  • Беляков Николай Анатольевич
RU2666752C1
Способ производства литой многослойной заготовки 2019
  • Шильников Евгений Владимирович
  • Кабанов Илья Викторович
  • Урин Сергей Львович
  • Гаврилов Алексей Александрович
  • Троянова Юлия Александровна
  • Дмитриев Александр Иассонович
  • Муруев Станислав Владимирович
RU2722844C1
КОНТАКТНЫЙ ПРОВОД 2003
  • Мысик Р.К.
  • Логинов Ю.Н.
  • Скрыльников А.И.
RU2261185C2
ПРОФИЛЬ ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН 2006
  • Логинов Юрий Николаевич
  • Мысик Раиса Константиновна
  • Титова Анна Григорьевна
  • Мякошин Владимир Иванович
  • Семенов Артем Павлович
RU2309499C1
МОДИФИЦИРУЮЩИЙ ЛИГАТУРНЫЙ ПРУТОК Ai-Sc-Zr 2012
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2497971C1
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ЗАГОТОВОК ИЗ ХИМИЧЕСКИ АКТИВНЫХ ТУГОПЛАВКИХ МЕТАЛЛОВ IV И V ГРУПП ИЛИ СПЛАВОВ НА ИХ ОСНОВЕ ДЛЯ ГОРЯЧЕЙ ДЕФОРМАЦИИ 2010
  • Агапитов Владимир Анатольевич
  • Анищук Денис Сергеевич
  • Антипов Вадим Витальевич
  • Антоненков Евгений Васильевич
  • Бельских Владимир Михайлович
  • Ильенко Евгений Владимирович
  • Сапурин Лев Юрьевич
  • Уткин Константин Владимирович
  • Фефилов Александр Евгеньевич
RU2457276C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ NbSn И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ NbSn 2013
  • Шиков Александр Константинович
  • Воробьёва Александра Евгеньевна
  • Абдюханов Ильдар Мансурович
  • Фигуровский Дмитрий Константинович
  • Дергунова Елена Александровна
  • Никуленков Евгений Васильевич
  • Насибулин Мансур Нурахметович
  • Трактирникова Надежда Викторовна
RU2559803C2
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ПРОВОЛОКИ 2014
  • Пелленен Анатолий Петрович
  • Штер Арон Абрамович
  • Дрёмин Владимир Григорьевич
  • Карева Надежда Титовна
RU2561564C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОЙ ПРОВОЛОКИ

Изобретение относится к металлургии алюминиевых сплавов, содержащих металлы, практически не растворяющиеся в твердом алюминии: железо, никель, кобальт, редкоземельные металлы, иттрий, и предназначено для изготовления проводников электрического тока в виде проволоки диаметром 0,1-0,3 мм, работающих при повышенных температурах до 250°C. Способ получения многослойной проволоки, состоящей из сердечника из алюминиевого сплава и плакирующих металлических слоев, включает изготовление заготовки сердечника из сплава Al - 8% Ce путем охлаждения жидкого сплава со скоростью 0,2-0,8°C/с до температуры ниже температуры его полного затвердевания, нагрева до температуры литья 720±10°C со скоростью, равной или большей 0,2°C/с и литья слитка диаметром 50-100 мм со скоростью 0,001-0,005 м/с при создании в лунке слитка интенсивного кругового движения расплава, последовательное нанесение на заготовку сердечника концентрических слоев меди и серебра и прессование полученной трехслойной заготовки в пруток, который подвергают волочению с получением проволоки диаметром 0,1-0,3 мм. Техническим результатом изобретения является улучшение качества пайки проволоки, повышение удельной электропроводности и стабильности механических свойств при рабочей температуре до 250°C. 5 з.п. ф-лы, 2 табл., 4 пр.

Формула изобретения RU 2 557 378 C2

1. Способ получения многослойной проволоки, состоящей из сердечника из алюминиевого сплава и плакирующих металлических слоев, включающий изготовление заготовки сердечника из сплава Al - 8% Ce путем охлаждения жидкого сплава со скоростью 0,2-0,8°C/с до температуры, ниже температуры его полного затвердевания, нагрева до температуры литья 720±10°C со скоростью, равной или большей 0,2°C/с, и литья слитка диаметром 50-100 мм со скоростью 0,001-0,005 м/с при создании в лунке слитка интенсивного кругового движения расплава, последовательное нанесение на заготовку сердечника концентрических слоев меди и серебра, прессование полученной трехслойной заготовки в пруток, который подвергают волочению с получением проволоки диаметром 0,1-0,3 мм.

2. Способ по п.1, отличающийся тем, что интенсивное круговое движение расплава создают с помощью гидростатического давления столба расплава такого же состава, подаваемого в лунку через распределитель с тангенциально выполненными отверстиями.

3. Способ по п.1, отличающийся тем, что отношение толщины слоя меди и слоя серебра к диаметру заготовки сердечника составляет соответственно 0,03-0,07 и 0,02-0,05.

4. Способ по п.1, отличающийся тем, что трехслойную заготовку прессуют в пруток при температуре 300-350°C и скорости прессования 0,05-0,08 м/с через конусовидную матрицу с углом 45°.

5. Способ по п.1, отличающийся тем, что волочение прутка ведут при единичных обжатиях 15-20% с промежуточными отжигами при 300-350°C и временем выдержки 1,0-2,0 ч с суммарной вытяжкой 70-80%.

6. Способ по п.1, отличающийся тем, что слой серебра наносят методом гальваностегии при температуре электролита 55-65°C, катодной плотности тока 30-80 А/м2 и времени контакта 3-5 мин.

Документы, цитированные в отчете о поиске Патент 2015 года RU2557378C2

JP 10237674 A, 08.09.1998
JP 10237673 A, 08.09.1998
US 20040038070 A1, 26.02.2004
СВЕРХПРОВОДЯЩИЙ ПРОВОД 2006
  • Коденкандат Томас
  • Чжан Вэй
  • Хуан Ибин
  • Ли Сяопин
  • Сигал Эдвард Дж.
  • Рупич Мартин В.
RU2414769C2
Способ получения металлических покрытий на алюминии 1981
  • Ипатов Юрий Петрович
  • Белый Диамар Иванович
  • Ипатова Римма Сергеевна
  • Трубицына Маргарита Васильевна
SU1032047A1

RU 2 557 378 C2

Авторы

Данишевский Александр Львович

Чепеленко Виктор Николаевич

Курбатов Михаил Геннадьевич

Кострюкова Евгения Леонидовна

Даты

2015-07-20Публикация

2013-03-21Подача