СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ НИКЕЛЯ, ПОКРЫТЫХ СЛОЕМ УГЛЕРОДА Российский патент 2016 года по МПК C01G53/00 B82B3/00 B82Y30/00 B22F9/24 B22F9/30 

Описание патента на изобретение RU2577840C1

Изобретение относится к получению наночастиц никеля, которые применяются в качестве катализаторов, хранителей информации, сенсоров, входят в состав магнитных жидкостей.

Наночастицы никеля получают диспергированием металла или восстановлением ионов никеля в растворах с добавлением веществ, образующих нанореакторы (мицеллы, растворы высокомолекулярных веществ). В роли восстановителей выступают гидразин, борогидрид (Миргород Ю.А., Ефимова Н.А. Синтез суперпарамагнитных наногибридов Pt/Ni в прямых мицеллах катионных ПАВ. Журн. физ. химии. 2008. Т. 81. №3. С. 465). Восстановление может происходить и при термическом разложении сухих композиций, содержащих соли никеля.

Наиболее близким к предлагаемому изобретению является изобретение «Однородные наночастицы никеля, покрытые оболочкой, и способы их получения» (Патент на изобретение №246609, МПК6 C01G 53/00, B82B 3/00, B82Y 99/00). По известному способу наночастицы никеля, покрытые углеродным слоем, получают термическим разложением в инертной атмосфере нормального или кислого малеата никеля. Термическое разложение ведут при нагревании до температуры 450°C, охлаждение продукта ведут в инертной атмосфере.

Для того чтобы получить малеат никеля, необходимо вначале получить малеиновую кислоту окислением нафталина с катализатором, затем выделить малеиновую кислоту из реакционной среды, провести реакцию нейтрализации, выделить малеат никеля из реакционной среды. Таким образом, исходный прекурсор для термического разложения получают длительными технологическими операциями, в результате чего загрязняется окружающая среда, затрачиваются значительные материальные и трудовые ресурсы. В последнее время развивается «зеленый синтез», в котором используются листья или экстракты растений (Миргород Ю.А., Бородина В.Г. Получение и бактерицидные свойства наночастиц серебра в водном экстракте чайных листьев. Неорг. матер. 2013. Т. 49. №10. С. 1-4).

Технической задачей изобретения является упрощение способа получения наночастиц никеля с помощью «зеленого синтеза».

Технический результат изобретения достигается тем, что в способе получения наночастиц никеля, покрытых слоем углерода, согласно изобретению термическому разложению в вакууме 10-1 мбар подвергают пропитанные водным раствором NiCl2·6H2O сухие лепестки китайской розы, разложение ведут при температуре 600-700°C в течение 30-40 мин со скоростью 20°C/мин.

Лепестки китайской розы больше известны как Каркадэ, которые используют для заварки чая. Они содержат флавоноиды, органические кислоты, целлюлозу. По соотношению массы сухих листьев и количества поглощенной соли никеля можно подобрать композит для разложения. Чем меньше будет концентрация поглощенной соли, тем мельче будут наночастицы никеля и наоборот. По этой же причине лепестки пропитывают раствором в течение 10-20 час. После пропитки лепестки отделяют от раствора и сушат 2-4 час в сушильном шкафу в графитовом тигле при 60-80°C. Во время сушки удаляется влага и, по-видимому, образуются соединения ионов никеля с веществами Каркадэ. Образующиеся связи удерживают Ni(II) в порах лепестков. Далее сушеные лепестки с Ni(II) в графитовом тигле постепенно, со скоростью 20°C/мин нагревают в вакууме 10-1 мбар до 600-700°C в течение 30-40 мин. Термическое разложение композиции соль/темплата - основной технологический процесс. Можно предполагать, основываясь на экспериментах, полученных в работе J. Phys. Chem. С. 2009. V. 113. Р. 20097-20107, что при пиролизе целлюлозы выделяются восстановители СО, C2H2 и даже Н2. Они восстанавливают Ni(II) до Ni. По-видимому, данный способ можно использовать и с применением лепестков цветов и листьев различных растений. После охлаждения порошка просвечивающий электронный микроскоп показывает образование наночастиц размером 10-50 нм. После 10 суток рентгенограмма порошка не меняется, что указывает на отсутствие окисления поверхности наночастиц и защиту их углеродом. Элементный анализ подтверждает, что в порошке присутствует Ni, а остальное мезоморфный/аморфный углерод.

Предложенный способ иллюстрируется примером. 10 г сухих лепестков китайской розы заливали 20 мл 0,1 М раствора NiCl2·6H2O и давали пропитаться в течение 15 час. После этого лепестки отделяли от раствора и сушили в сушильном шкафу при 70°C в течение 3 час в графитовом тигле. Далее графитовый тигель с лепестками и NiCl2 помещали в печь ASTRO и нагревали до 600°C со скоростью 20°C/мин в вакууме 10-1 мбар в течение 35 мин. Полученный порошок охлаждали на воздухе до комнатной температуры. Размеры и форму наночастиц порошка определяли с помощью просвечивающей электронной микроскопии с использованием микроскопа фирмы JEOL JEM-1011 при ускоряющем напряжении 100 кВ. Их размеры были в пределах 9-52 нм. Элементный анализ определяли энергодисперсионной приставкой сканирующего электронного микроскопа JEOL 660 LV. Порошок содержал 47% Ni, а остальное - углерод. Поэтому можно считать, что диаметр наночастиц Ni, примерно, равен 5-25 нм. Фазовый анализ выполняли рентгеновским порошковым дифрактометром GBC EMMA. На дифрактограмме зафиксированы пики С(111) 2θ=26°, Ni(111) 44, Ni(200) 52, Ni(220) 77, т.е. пики аморфного углерода и металлического никеля. После 10 суток рентгенограмма не изменилась. Аморфный углерод, покрывающий наночастицы никеля, надежно защищал никель от окисления кислородом воздуха.

Из примера и описания изобретения видно, что техническая задача изобретения решена применением в предлагаемом способе получения наночастиц никеля, покрытых слоем углерода, «зеленого синтеза». Вещество, используемое в синтезе, создается природой. Не загрязняется окружающая среда, экономятся материальные и трудовые ресурсы.

Похожие патенты RU2577840C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА FeNi/C В ПРОМЫШЛЕННЫХ МАСШТАБАХ 2015
  • Кожитов Лев Васильевич
  • Козлов Владимир Валентинович
  • Муратов Дмитрий Геннадьевич
  • Костишин Владимир Григорьевич
  • Якушко Егор Владимирович
  • Гельман Геннадий Ефимович
RU2593145C1
СПОСОБ СИНТЕЗА НАНОКОМПОЗИТА CoNi/C НА ОСНОВЕ ПОЛИАКРИЛОНИТРИЛА 2014
  • Кожитов Лев Васильевич
  • Муратов Дмитрий Геннадьевич
  • Костишин Владимир Григорьевич
  • Якушко Егор Владимирович
  • Савченко Александр Григорьевич
  • Щетинин Игорь Викторович
  • Попкова Алена Васильевна
RU2558887C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО АНОДНОГО МАТЕРИАЛА 2008
  • Барнаков Чингиз Николаевич
  • Сеит-Аблаева Светлана Каюмовна
  • Козлов Алексей Петрович
  • Ануфриенко Владимир Фоедосьевич
  • Криворучко Олег Петрович
  • Пармон Валентин Николаевич
  • Романенко Анатолий Иванович
  • Исмагилов Зинфер Ришатович
RU2370437C1
СПОСОБ АКТИВАЦИИ МЕТАЛЛОКСИДНЫХ КАТАЛИЗАТОРОВ СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2010
  • Ткачев Алексей Григорьевич
  • Буракова Елена Анатольевна
  • Бураков Александр Евгеньевич
  • Иванова Ирина Владимировна
  • Блохин Александр Николаевич
RU2443470C2
СПОСОБ КОНВЕРСИИ НИТРАТОВ МЕТАЛЛОВ 2006
  • Ситсма Елле Рудольф Анне
  • Ван Диллен Адрианус Якобус
  • Де Йонг Петра Элизабет
  • Де Йонг Крийн Питер
RU2429073C2
ОДНОРОДНЫЕ НАНОЧАСТИЦЫ НИКЕЛЯ, ПОКРЫТЫЕ ОБОЛОЧКОЙ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2011
  • Юданова Людмила Ивановна
  • Логвиненко Владимир Александрович
  • Юданов Николай Федорович
RU2466098C1
Нанотубулярные материалы, кристаллизующиеся в системе KO-TiO-X-HO (X=NiO, MgO, AlO, CrO, CoO, FeO) и способ их синтеза 2017
  • Синельщикова Ольга Юрьевна
  • Масленникова Татьяна Петровна
  • Беспрозванных Надежда Владимировна
  • Гатина Эльмира Надыревна
RU2640766C1
СПОСОБ АКТИВАЦИИ МЕТАЛЛОКСИДНЫХ КАТАЛИЗАТОРОВ СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2009
  • Ткачев Алексей Григорьевич
  • Артемов Владимир Николаевич
  • Ткачев Максим Алексеевич
RU2430779C2
Способ получения наноструктурного гидроксида никеля 2019
  • Земскова Лариса Алексеевна
  • Егорин Андрей Михайлович
  • Токарь Эдуард Анатольевич
RU2719890C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОПОРОШКА НИКЕЛЬ-ЦИНКОВОГО ФЕРРИТА 2023
  • Мартинсон Кирилл Дмитриевич
  • Сахно Дарья Дмитриевна
  • Беляк Владислав Евгеньевич
  • Попков Вадим Игоревич
RU2813525C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ НИКЕЛЯ, ПОКРЫТЫХ СЛОЕМ УГЛЕРОДА

Изобретение может быть использовано в неорганической химии. Для получения наночастиц никеля, покрытых слоем углерода, сухие лепестки китайской розы, пропитанные водным раствором хлорида никеля, подвергают термическому разложению в вакууме 10-1 мбар. Разложение ведут при нагревании до температуры 600-700°C в течение 30-40 мин со скоростью 20°C/мин. Указанные лепестки пропитывают 0,1 М водным раствором NiCl2·6H2O в течение 10-20 ч. Изобретение позволяет упростить получение наночастиц никеля с помощью «зеленого синтеза». 1 з.п. ф-лы, 1 пр.

Формула изобретения RU 2 577 840 C1

1. Способ получения наночастиц никеля, покрытых слоем углерода, отличающийся тем, что термическому разложению в вакууме 10-1 мбар подвергают пропитанные водным раствором NiCl2·6H2O сухие лепестки китайской розы, разложение ведут при нагревании до температуры 600-700°C в течение 30-40 мин со скоростью 20°C/мин.

2. Способ по п. 1, отличающийся тем, что сухие лепестки китайской розы пропитывают 0,1 М водным раствором NiCl2·6H2O в течение 10-20 ч.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577840C1

ОДНОРОДНЫЕ НАНОЧАСТИЦЫ НИКЕЛЯ, ПОКРЫТЫЕ ОБОЛОЧКОЙ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2011
  • Юданова Людмила Ивановна
  • Логвиненко Владимир Александрович
  • Юданов Николай Федорович
RU2466098C1
НОВЫЙ СПОСОБ КРУПНОМАСШТАБНОГО ПРОИЗВОДСТВА МОНОДИСПЕРСНЫХ НАНОЧАСТИЦ 2005
  • Хиеон Таегхван
  • Парк Джонгнам
RU2375153C2
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНЫХ МЕТАЛЛИЧЕСКИХ ЧАСТИЦ 2008
  • Герасименя Валерий Павлович
  • Клыков Михаил Александрович
  • Захаров Сергей Викторович
  • Николотов Владимир Викторович
RU2394668C1
US 20120316340 A1, 13.12.2012
WO 2013104976 A1, 18.07.2013
WO 2005095031 A1, 13.10.2005.

RU 2 577 840 C1

Авторы

Миргород Юрий Александрович

Емельянов Сергей Геннадьевич

Даты

2016-03-20Публикация

2015-02-04Подача