СПОСОБ ОПРЕДЕЛЕНИЯ МАГНИТНОГО АЗИМУТА В СКВАЖИННОМ ИНКЛИНОМЕТРЕ В ПРОЦЕССЕ БУРЕНИЯ Российский патент 2016 года по МПК E21B47/22 

Описание патента на изобретение RU2586341C2

Изобретение относится к области инклинометрии и может быть использовано в нефте- и газопромысловой геофизике.

Известен способ устранения ошибок определения магнитного азимута, возникающих при работе инклинометра в условиях, когда магнитное поле Земли искажено наличием внешних магнитных возмущений со стороны ферромагнитных масс элементов конструкции буровой колонны (патент США №4761889, E21B 47/022). Согласно патенту выходные данные магнитометров представляют собой алгебраическую сумму проекций полезного сигнала, связанного с полем Земли, и поля магнитной помехи на соответствующие оси координат. Выделение полезного сигнала производится путем сравнения уровня выходных сигналов магнитометров, измеренных в буровой колонне для некоторых текущих значений зенитного угла, угла отклонителя и возмущенного значения азимута с теми величинами проекций поля, которые получаются при аналитическом проецировании вектора поля Земли известной для данной местности величины на соответствующие оси с теми же значениями угловых координат. Полученные результаты в форме набора последовательных по времени поправок вычитают из соответствующих исходных выходных данных магнитометров и таким образом итерационным способом получают уточненное значение азимутального угла.

Недостатком изложенного подхода является наличие итерационного процесса, который при зенитных углах, близких к 90°, и магнитных азимутах, приближающихся к 90° или 270°, занимает достаточно продолжительное время, что самым негативным образом сказывается на быстродействии инклинометра.

Кроме этого в излагаемом методе используется процедура учета влияния поперечных компонент поля возмущения буровой колонны на показания азимута. Однако прямые эксперименты показывают, что эта процедура является излишней при условии, если соответствующие датчики расположены аксиально по отношению к оси буровой колонны и на разумно близком расстоянии ~(200÷400) мм от ее магнитной кромки (см. Биндер Я.И., Клюшкин П.А., Тихонов А.Г. Экспериментальное исследование магнитометрической системы ориентации ствола скважины с компенсацией магнитных помех // НТВ Каротажник, 2010, Вып. 1, С. 61-67).

Известен способ, в котором величина помехи определяется путем компенсации разности текущих значений модуля суммарного поля, измеряемого феррозондом, размещенным в буровой колонне, и модуля поля Земли, измеренного или известного заранее в месте проведения буровых работ (патент РФ №2387827, E21B 47/022).

Основным недостатком способа является необходимость увеличения (более чем на порядок) точности измерения величины модуля возмущенного поля, поскольку его значения при любых возможных ориентациях инклинометра в пространстве меняются в весьма узких пределах относительно исходного модуля поля Земли.

Другим очевидным недостатком способа является то, что полезный сигнал при используемом подходе в принципе определяется лишь по абсолютной величине, в то время как для определения его знака дополнительно требуется, как минимум, знание или использование предыстории измерений.

Известен другой способ учета влияния магнитных возмущений со стороны магнитного окружения буровой колонны на показания магнитного азимута (патент РФ №2290673, пункт 1 формулы изобретения), взятый далее за прототип. Данный способ основан на том, что в зоне считывания помимо классической триады магнитометров, вырабатывающих величины напряженностей суммарного поля hX3, hY3, hZ3, на некотором расстоянии от источника магнитных помех размещают вдоль продольной оси инклинометра набор разнесенных в пространстве дополнительных (минимум двух) датчиков напряженности магнитного поля, посредством которых определяют коэффициенты аппроксимации зависимости интенсивности магнитной помехи в функции расстояния, после чего вычисляют значение помехи в показаниях магнитометров и вводят поправки на ее величины в выходные сигналы.

Недостатком способа-прототипа является достаточно узкая область его применения, ограниченная, в частности, случаем, когда поле компенсируемых инклинометром магнитных помех создается одним-единственным источником магнитных возмущений, например паразитным полем забойного двигателя. В случае же, если допустить, что колонна собрана из элементов конструкции, являющихся в магнитном отношении совокупностью элементарных N-S диполей, то дополнительным ограничением метода является требование, чтобы при сборке в единую компоновку указанные N-S диполи включались друг относительно друга последовательно. В математическом отношении это связано с тем, что только при выполнении этих условий функция распределения поля в зоне считывания магнитометров носит сравнительно монотонный характер и не содержит каких-либо локальных максимумов или минимумов, которые в принципе и являются основным источником ошибок при вычислении коэффициентов аппроксимации. Технически реализация указанного требования согласного включения элементарных N-S диполей на практике представляется достаточно проблематичной, поскольку различные узлы указанной компоновки изготавливаются, как правило, разными исполнителями, а процедура принудительного перемагничивания названных узлов в необходимом направлении выглядит достаточно затратной.

Кроме того, наличие в составе буровой колонны таких локальных источников паразитных магнитных помех, как аккумуляторные батареи в телесистеме, переводники и пр. при их достаточно близком расположении к феррозондам также может приводить к искажению результатов вычисления магнитного азимута (см. Биндер Я.И., Денисов В.М., Клюшкин П.А., Тихонов А.Г., Бенедик Р.Г. Экспериментальное исследование инклинометра с компенсацией магнитных помех в составе серийной компоновки низа буровой колонны при малом значении параметра приближения к двигателю забойного агрегата // НТВ Каротажник, 2011, Вып. 1, С. 29-33). Все вышеперечисленное свидетельствует о том, что подход, основанный на аппроксимации зависимости поля помехи квадратичной гиперболой, имеет ограниченное применение в решении задач компенсации поля помехи, а для ряда конфигураций буровой колонны с произвольным характером распределения поля в зоне считывания феррозондов он оказывается вообще неприемлемым.

Кроме того, в прототипе в качестве дополнительных датчиков поля используются трехосные первичные преобразователи. Однако экспериментально обнаружено, что если разместить магнитные центры первичных датчиков в зоне считывания строго на геометрической оси общей компоновки буровой колонны, то показания поперечных датчиков поля при этом оказываются практически не возмущаемыми полем помехи, и, следовательно, их показания совпадают с соответствующими проекциями HX3, HY3 поля Земли, т.е. всегда hX3=HX3 и hY3=HY3. Это означает, что единственным источником ошибок в вычислении азимута является продольная составляющая намагниченности буровой колонны и, следовательно, для ее учета в качестве двух дополнительных датчиков достаточно использовать одноосные преобразователи с осью чувствительности, совпадающей по направлению с продольной осью компоновки буровой колонны.

Задачей предлагаемого изобретения является разработка метода компенсации магнитных возмущений со стороны элементов конструкции буровой колонны в феррозондовом инклинометре в условиях, когда распределение интенсивности магнитных помех в зоне считывания магнитометров носит произвольный характер.

Достигаемый технический результат - расширение функциональных возможностей инклинометра за счет более высокой точности выработки азимута и обеспечения работоспособности инклинометра в условиях произвольного характера распределения поля в зоне считывания.

Технический результат достигается тем, что в качестве дополнительных феррозондов используют одноосные с направленными вдоль оси Z осями чувствительности датчики поля, вырабатывающие соответственно текущие значения проекций суммарного поля hZ1=HZ3+HP1 и hZ2=HZ3+HP2, где HZ3 - проекция поля Земли на ось Z инклинометра, a HP1, HP2 - напряженности поля помехи, фиксируемые дополнительными датчиками 1 и 2, и затем производят вычисление величин Hz(1), HZ(2), HZ(3), представляющих собой три независимые реализации одного и того же значения проекции HZ3, очищенной от влияния магнитных помех, в соответствии с выражениями HZ(1)=hZ1-(hZ1-hZ3)/1-K31, HZ(2)=hZ2-(hZ2-hZ3)/1-K32, HZ(3)=hZ1-(hZ1-hZ2)/1-K21, где (hzi-hzj) характеризует разность показаний первичных измерителей, ответственных за локальный градиент поля между датчиками i и j, а величины Kij - масштабные коэффициенты, являющиеся постоянными величинами на всем протяжении времени проводки скважины и которые экспериментально определяют на начальном этапе проведения буровых работ, для чего колонну в собранном виде устанавливают в вертикальное положение со значением зенитного угла в диапазоне (0÷15)° и опускают на такую глубину, при которой приращение разности показаний δ(hZ1-hZ3) в процессе движения колонны вниз не превышает одной-двух отсчетных единиц, после чего находят коэффициенты в форме выражений

K 31 = h Z 3 H Z 0 h Z 1 H Z 0 , K 32 = h Z 3 H Z 0 h Z 2 H Z 0 , K 21 = h Z 2 H Z 0 h Z 1 H Z 0 , где

H Z 0 = ( H 0 2 H x 2 H y 2 ) 1 2 - проекция поля Земли на ось Z инклинометра в режиме калибровки,

H0 - модуль поля Земли в месте проведения испытаний, и затем искомую проекцию HZ3 определяют как среднее из величин H(1), H(2), H(3), которое затем наряду с данными измерений проекций HX3 и HY3 подставляют в известную формулу вычисления магнитного азимута.

Физический принцип, который положен в основу предлагаемого способа, базируется на использовании того очевидного факта, что проекции поля HX3, HY3, HZ3, связанные с полем Земли, естественным образом являются однородными по координате, тогда как поле помехи, напротив, является существенно неоднородным и представляет собой функцию, достаточно быстро убывающую с расстоянием от источника магнитных возмущений. В таком случае, если измерить локальный градиент поля между любой парой точек наблюдения, то по его уровню можно судить о величине собственно паразитного магнитного поля и, следовательно, оказывается возможным из суммарного сигнала выделить составляющую проекции поля Земли HZ3, очищенную от влияния магнетизма носителя.

В математическом отношении это может быть выражено в виде трех следующих равенств для вычисления соответственно трех независимых реализаций значения проекций поля Земли Hz(1), HZ(2), HZ(3), свободных от влияния магнитных помех Hz(1)=hZ1-(hZ1-hZ3)/1-K31, HZ(2)=hZ2-(hZ2-hZ3)/1-K32, HZ(3)=hZ1-(hZ1-hZ2)/1-K21, где Kij=Hpi/Hpj представляет собой отношение интенсивностей помехи, фиксируемых феррозондами i и j, а выражения в круглых скобках характеризует разность показаний магнитометров при вычислении локальных градиентов поля между точками наблюдения 1-3, 1-2, 2-3 зоны считывания. Поскольку все три полученные величины Hz(l) основаны на данных измерений от трех датчиков, находящихся, в принципе, в условиях одновременного воздействия магнитных помех со стороны всех элементов сборки буровой колонны, то, очевидно, наилучшим по точности результатом обработки данных будет среднее из измеренных величин, т.е..

В процессе производства буровых работ суммарный магнитный момент сборки, а следовательно, и абсолютная величина помех Hpi может меняться в весьма широких пределах в зависимости от многих причин: пространственной ориентации буровой колонны относительно плоскости магнитного меридиана, температуры окружающей среды, уровня механических напряжений, возникающих в элементах конструкции буровой колонны при ее движении в толще Земли. Однако отношение интенсивностей помех Kij=Hpi/Hpj остается при этом неизменным. Это связано с тем, что при фиксированном расстоянии между датчиками величины измеряемой напряженности поля помехи для каждого из них являются линейными функциями суммарного магнитного момента сборки.

Наиболее просто коэффициенты Kij могут быть определены на начальном этапе производства работ в условиях, когда колонну в собранном состоянии устанавливают в положение с зенитным углом (0÷±15)°. С целью исключения влияния магнитного окружения буровой платформы на показания датчиков инклинометра hZ1, hZ2, hZ3 осевой проекции поля (и автоматически на показания поперечных компонент HX3, HY3) буровая колонна погружается минимально на такую глубину, при которой приращения разности величин δ|hz1-hz3| при движении колонны вниз не будет превышать одной или двух отсчетных единиц. После этого, имея данные измерений hZ1, hZ2, hZ3, определяют величины напряженности магнитного поля помех в соответствии с очевидными выражениями Hpi=hzi-Hz0, (i=1, 2, 3) и соответственно вычисляют коэффициенты Kij

K 31 = h Z 3 H Z 0 h Z 1 H Z 0 , K 32 = h Z 3 H Z 0 h Z 2 H Z 0 , K 21 = h Z 2 H Z 0 h Z 1 H Z 0 .

Данный способ был реализован на экспериментальном образце инклинометра, работающего в условиях воздействия магнитных помех со стороны забойного двигателя. Поскольку помеха присутствовала только с одной стороны инклинометра, то при расчетах использовались данные только одного дополнительного датчика Z-проекции магнитного поля. Измерения проводились при позиционировании сборки приблизительно в плоскости горизонта на восьми наперед заданных значениях магнитного азимута A0. Погрешности определения азимута представлены ниже в таблице, где для сравнения приведены данные измерения ошибок, вычисляемых по способу, описанному в прототипе.

Из сопоставления данных следует, что по сравнению с прототипом предлагаемым способом достигается более высокая точность выработки азимута и достигается заявленный технический результат.

Похожие патенты RU2586341C2

название год авторы номер документа
Способ определения координат источника радиоизлучений с борта летательного аппарата с использованием триортогональной рамочной антенной системы 2024
  • Богдановский Сергей Валерьевич
  • Севидов Владимир Витальевич
RU2824445C1
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОГО АЗИМУТА В СКВАЖИННОМ ИНКЛИНОМЕТРЕ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ИХ ОСУЩЕСТВЛЕНИЯ 2005
  • Биндер Яков Исаакович
  • Вольфсон Геннадий Борисович
  • Гаспаров Петрос Меликович
  • Геркус Андрей Александрович
  • Гутников Александр Леонидович
  • Клюшкин Павел Александрович
  • Падерина Татьяна Владимировна
  • Розенцвейн Владимир Георгиевич
RU2290673C2
ФЕРРОЗОНДОВЫЙ СКВАЖИННЫЙ ИНКЛИНОМЕТР 2005
  • Биндер Яков Исаакович
  • Вольфсон Геннадий Борисович
  • Гаспаров Петрос Меликович
  • Геркус Андрей Александрович
  • Гутников Александр Леонидович
  • Клюшкин Павел Александрович
  • Падерина Татьяна Владимировна
  • Розенцвейн Владимир Георгиевич
RU2291294C1
СПОСОБ СКВАЖИННОЙ ИНКЛИНОМЕТРИИ И СКВАЖИННАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2021
  • Гарайшин Шамиль Гилемшинович
  • Коровин Валерий Михайлович
  • Каримова Эльвина Разитовна
RU2770874C1
СПОСОБ ТОЧНОЙ ПОСАДКИ ВОЗДУШНЫХ СУДОВ 1998
  • Тельминов М.М.
  • Фисенко А.Г.
  • Довгань А.С.
RU2199472C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА УГЛОВЫХ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ БУРОВОГО ИНСТРУМЕНТА 2015
  • Миловзоров Дмитрий Георгиевич
  • Ясовеев Васих Хаматович
  • Морозова Елена Сергеевна
RU2610957C1
СПОСОБ ИЗМЕРЕНИЯ ОРИЕНТАЦИИ СТВОЛА СКВАЖИНЫ В ПРОЦЕССЕ БУРЕНИЯ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2001
  • Ракита Я.М.
  • Афанасьев В.А.
RU2204017C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2000
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Коловертнов Ю.Д.
  • Федоров С.Н.
RU2166084C1
СПОСОБ НАВЕДЕНИЯ БУРОВОЙ КОЛОННЫ НА МЕСТОРОЖДЕНИЕ ПО АЗИМУТУ 2000
  • Каштанов В.Д.
  • Никишин С.А.
  • Корнев Н.А.
  • Орлов Г.И.
RU2187637C2
СПОСОБ ПОВЫШЕНИЯ ВИБРОУСТОЙЧИВОСТИ ИНКЛИНОМЕТРА 2013
  • Сокирский Григорий Степанович
  • Ширманов Михаил Иванович
  • Удовиченко Анатолий Иванович
  • Дьякович Владимир Богданович
RU2534866C1

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ МАГНИТНОГО АЗИМУТА В СКВАЖИННОМ ИНКЛИНОМЕТРЕ В ПРОЦЕССЕ БУРЕНИЯ

Изобретение относится к области инклинометрии и может быть использовано в нефте- и газопромысловой геофизике. Достигаемый технический результат - расширение функциональных возможностей инклинометра за счет более высокой точности выработки азимута и обеспечения работоспособности инклинометра в условиях произвольного характера распределения поля в зоне считывания. Способ основан на использовании показаний проекций HX3, HY3, hZ3 классической триады феррозондов и двух дополнительных датчиков поля, пространственно разнесенных вдоль продольной оси Z инклинометра. В качестве дополнительных феррозондов используют одноосные с направленными вдоль оси Z осями чувствительности датчики поля, вырабатывающие соответственно текущие значения проекций суммарного поля hZ1=HZ3+HP1 и hZ2=HZ3+HP2, где HZ3 - проекция поля Земли на ось Z инклинометра, a HP1, HP2 - напряженности поля помехи, фиксируемые дополнительными датчиками 1 и 2, и затем производят вычисление величин HZ(1), HZ(2), HZ(3), представляющих собой три независимые реализации одного и того же значения проекции HZ3, очищенной от влияния магнитных помех, в соответствии с выражениями:

HZ(1)=hZ1-(hZ1-hZ3)/1-K31,

HZ(2)=hZ2-(hZ2-hZ3)/1-K32,

HZ(3)=hZ1-(hZ1-hZ2)/1-K21,

где (hzi-hzj) характеризует разность показаний первичных измерителей, ответственных за локальный градиент поля между датчиками i и j, а величины - масштабные коэффициенты, являющиеся постоянными величинами на всем протяжении времени проводки скважины и которые экспериментально определяют на начальном этапе проведения буровых работ, для чего колонну в собранном виде устанавливают в вертикальное положение со значением зенитного угла в диапазоне (0÷15)° и опускают на такую глубину, при которой приращение разности показаний δ(hZ1-hZ3) в процессе движения колонны вниз не превышает одной-двух отсчетных единиц. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 586 341 C2

1. Способ измерения магнитного азимута в скважинном инклинометре, работающем в условиях воздействия магнитных помех со стороны магнитного окружения буровой колонны, основанный на использовании показаний проекций HX3, HY3, hZ3 классической триады феррозондов и двух дополнительных датчиков поля, пространственно разнесенных вдоль продольной оси Z инклинометра, отличающийся тем, что в качестве дополнительных феррозондов используют одноосные с направленными вдоль оси Z осями чувствительности датчики поля, вырабатывающие соответственно текущие значения проекций суммарного поля hZ1=HZ3+HP1 и hZ2=HZ3+HP2, где HZ3 - проекция поля Земли на ось Z инклинометра, a HP1, HP2 - напряженности поля помехи, фиксируемые дополнительными датчиками 1 и 2, и затем производят вычисление величин HZ(1), HZ(2), HZ(3), представляющих собой три независимые реализации одного и того же значения проекции HZ3, очищенной от влияния магнитных помех, в соответствии с выражениями HZ(1)=hZ1-(hZ1-hZ3)/1-К31, HZ(2)=hZ2-(hZ2-hZ3)/1-К32, HZ(3)=hZ1-(hZ1-hZ2)/1-K21, где (hZi-hZj) характеризует разность показаний первичных измерителей, характеризующих локальный градиент поля между датчиками i и j, а величина Kij - масштабные коэффициенты, являющиеся постоянными величинами на всем протяжении времени проводки скважины и которые экспериментально определяют на начальном этапе проведения буровых работ, для чего колонну в собранном виде устанавливают в вертикальное положение со значением зенитного угла в диапазоне (0÷15)° и опускают на такую глубину, при которой приращение разности показаний δ(hΖ1-hΖ3) магнитометров в телесистеме при движении колонны вниз не превышает одной-двух отсчетных единиц, после чего находят коэффициенты в форме выражений
K 31 = h Z 3 H Z 0 h Z 1 H Z 0 , K 32 = h Z 3 H Z 0 h Z 2 H Z 0 , K 21 = h Z 2 H Z 0 h Z 1 H Z 0 ,
где
H Z 0 = ( H 0 2 H x 2 H y 2 ) 1 / 2 - проекция поля Земли на ось Z инклинометра в режиме калибровки,
Н0 - модуль поля Земли в месте проведения испытаний,
и затем искомую проекцию HZ3 определяют как среднее из величин Н(1), Н(2), Н(3), которое затем наряду с данными измерений проекций HX3 и HY3 и подставляют в известную формулу вычисления магнитного азимута.

2. Способ по п. 1, отличающийся тем, что при определении коэффициентов Kij колонну погружают на такую глубину, при которой приращение модуля возмущенного значения поля при движении колонны вниз не превышает одной-двух отсчетных единиц.

Документы, цитированные в отчете о поиске Патент 2016 года RU2586341C2

ЗАЩИТНАЯ КРЫШКА ДЛЯ ДИСКОВОГО ТОРМОЗА И ДИСКОВЫЙ ТОРМОЗ, ВКЛЮЧАЮЩИЙ ТАКУЮ ЗАЩИТНУЮ КРЫШКУ 2003
  • Самуэльссон Ульф
RU2317454C2
СПОСОБ ОПРЕДЕЛЕНИЯ МАГНИТНОГО АЗИМУТА В ПРОЦЕССЕ БУРЕНИЯ 2009
  • Дмитрюков Алексей Юрьевич
  • Исмагилов Рустам Мидхатович
RU2387827C1
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОГО АЗИМУТА В ПРОЦЕССЕ БУРЕНИЯ 2007
  • Дмитрюков Юрий Юрьевич
  • Исмагилов Мидхат Асгатович
RU2349938C1
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОГО АЗИМУТА В СКВАЖИННОМ ИНКЛИНОМЕТРЕ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ИХ ОСУЩЕСТВЛЕНИЯ 2005
  • Биндер Яков Исаакович
  • Вольфсон Геннадий Борисович
  • Гаспаров Петрос Меликович
  • Геркус Андрей Александрович
  • Гутников Александр Леонидович
  • Клюшкин Павел Александрович
  • Падерина Татьяна Владимировна
  • Розенцвейн Владимир Георгиевич
RU2290673C2
ФЕРРОЗОНДОВЫЙ СКВАЖИННЫЙ ИНКЛИНОМЕТР 2005
  • Биндер Яков Исаакович
  • Вольфсон Геннадий Борисович
  • Гаспаров Петрос Меликович
  • Геркус Андрей Александрович
  • Гутников Александр Леонидович
  • Клюшкин Павел Александрович
  • Падерина Татьяна Владимировна
  • Розенцвейн Владимир Георгиевич
RU2291294C1
AU 2005220213 B2, 03.02.2011.

RU 2 586 341 C2

Авторы

Биндер Яков Исаакович

Гутников Александр Леонидович

Клюшкин Павел Александрович

Падерина Татьяна Владимировна

Розенцвейн Владимир Георгиевич

Даты

2016-06-10Публикация

2014-11-05Подача