СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА УГЛОВЫХ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ БУРОВОГО ИНСТРУМЕНТА Российский патент 2017 года по МПК E21B47/22 

Описание патента на изобретение RU2610957C1

Изобретение относится к области бурения наклонно направленных и горизонтальных скважин, в частности - к определению угловых параметров пространственной ориентации бурового инструмента (азимута, зенитного угла и угла установки отклонителя в апсидальной плоскости).

Известен способ измерения зенитных и азимутальных углов (патент РФ 2231638, Е21В 47/02, опубл. 27.06.2004). Устройство содержит трехкомпонентный феррозондовый и трехкомпонентный акселерометрический преобразователи. По показаниям феррозондов определяют компоненты полного вектора геомагнитного поля Земли, а по показаниям акселерометров определяют компоненты полного вектора силы тяжести. По полученным данным вычисляют текущие значения азимутального и зенитного углов. Далее производят сравнение текущего замера со средним значением четырех замеров, отстающих от текущего на четыре записи, относительно допуска. Если текущий замер находится за пределами допуска, то его заменяют на среднее. После этого производят осреднение определенного числа предыдущих замеров и заменяют значение текущего измерения на осредненное. Затем производят фильтрацию посредством режекторного фильтра.

Известен также способ определения углов искривления скважины (патент РФ 2503810, Е21В 47/022, опубл. 10.01.2014), позволяющий осуществлять проведение измерений в обсаженной и необсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних. Предложен способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины.

Недостатком этих способов является отсутствие учета влияния малых угловых параметров отклонения осей чувствительности трехкомпонентного феррозондового и трехкомпонентного акселерометрического преобразователей инклинометрических систем от ортогональных осей.

Наиболее близким по технической сущности и достигаемому результату является способ определения направления скважины (варианты) (патент РФ №2109943, Е21В 47/022, 27.04.1998) во время ее бурения с помощью трехосевого блока акселерометр/магнитометр, размещенного в используемой бурильной колонне, в котором осуществляют измерение составляющих gx, gy, gz ускорения известного местного вектора силы тяжести, по которым определяют зенитный θ и визирный ϕ углы, измеряют компоненты mx, my, mz полного вектора напряженности геомагнитного поля, по которым определяют азимут α при известных mx, my, mz, θ и ϕ.

Недостатком прототипа является невысокая точность определения искомых углов θ и ϕ по измеренным сигналам gx, gy, gz с трехкомпонентного акселерометра и α по измеренным сигналам mx, my, mz с трехкомпонентного магнитометра, обусловленная тем, что при обработке результатов измерений не учитывают малые угловые параметры отклонения осей чувствительности датчиков в трехосевом блоке акселерометр/магнитометр от осей ортонормированных базисов корпуса скважинного прибора.

Задачей, на решение которой направленно заявляемое изобретение, является повышение точности определения комплекса искомых угловых параметров пространственной ориентации бурового инструмента - α, θ и ϕ.

Технический результат - уменьшение погрешности измерений инклинометрических систем за счет учета малых угловых параметров отклонения осей чувствительности трехкомпонентных феррозондовых и акселерометрических датчиков инклинометрических систем от ортогональных осей при обработке результатов измерений.

Технический результат достигается тем, что в способе определения направления скважины во время ее бурения с помощью трехосевого блока акселерометр/магнитометр, включающем установку в корпусе скважинного прибора трехосевого блока акселерометр/магнитометр, с помощью которого осуществляют измерение составляющих gx, gy, gz известного вектора ускорения силы тяжести, измеряют компоненты mx, my, mz полного вектора напряженности геомагнитного поля, по которым определяют азимут α, зенитный θ и визирный ϕ углы, при этом используя априорно определенные численные значения малых угловых параметров χA, δXA, δYA, σ1A, σ2A для трехосевого акселерометра и χF, γF, δXF, δYF, σ1F, σ2F для трехосевого магнитометра, которые характеризуют отклонение осей чувствительности датчиков блока акселерометр/магнитометр от осей ортонормированных базисов корпуса скважинного прибора, зенитный θ и визирный ϕ углы определяют по измеренным сигналам gi(i=x,y,z) с учетом малых угловых параметров χA, δХА, δYA, σ1А, σ2A, а азимут α определяют по измеренным сигналам mi=(i=x,y,z) вычисленным θ и ϕ с учетом малых угловых параметров χF, γF, δYF δ1F, σ1F, σ2F, кроме того, согласно изобретению зенитный θ и визирный углы ϕ определяют по формулам:

где

a gx, gy, gz - измеренные сигналы с датчиков трехосевого акселерометра, а затем определяют азимут α по формуле:

где

a mx, my, mz - приведенные значения измеренных сигналов с датчиков трехосевого магнитометра.

Существо изобретения поясняется чертежами. На фиг. 1 условно представлена схема трехосевого блока акселерометр/магнитометр, а на фиг. 2 - функциональная схема устройства, реализующего предложенный способ.

В начальном положении корпуса скважинного прибора (α=θ=ϕ=0) ортонормированные базисы 0XAYAZA и 0XFYFZF (фиг. 1) являются правыми системами координат, жестко связанными с корпусом, причем оси 0ZA и 0ZF совпадают с направлением вектора ускорения свободного падения, а ось 0ХА параллельна оси 0XF, которая ориентирована в плоскости горизонта и направлена на север магнитного меридиана.

Предложенный способ, реализуемый в устройстве (фиг. 2), содержит наземное оборудование, включающее персональную ЭВМ 1, наземный интерфейсный блок 2 и пульт бурильщика 3, а также скважинный прибор 4, включающий скважинный блок питания 5, скважинный блок передачи данных 6, скважинный блок управления 7, трехосевой блок акселерометр/магнитометр 8, многоканальный аналого-цифровой преобразователь 9, причем скважинный блок передачи данных 6 и скважинный блок питания 5 связаны с наземным интерфейсным блоком посредством линии связи 10.

Работа устройства заключается в следующем. Наземный интерфейсный блок 2, запитываемый от промышленной сети переменного напряжения, формирует постоянное напряжение Un, которое через линию связи 10 (например, одножильный каротажный кабель) поступает на вход скважинного блока питания 5, в котором отрабатываются необходимые параметры энергопотребления Uni для всех узлов и блоков скважинного прибора. При определенном фиксированном в пространстве положении скважинного прибора, т.е. при конкретных значениях α, θ и ϕ, аналоговые сигналы gi(i=x,y,z) с акселерометров AX, AY AZ, а также аналоговые сигналы mi(i=х,y,z) с феррозондов FX, FY и FZ, входящих в трехосевой блок акселерометр/магнитометр 8, поступают на входы многоканального аналого-цифрового преобразователя 9, в котором преобразуются в цифровые коды Qi, пропорциональные аналоговым сигналам gi и mi. Далее эти коды Qi в скважинном блоке передачи данных 6 преобразуются в последовательные помехоустойчивые коды Qj и через линию связи 10 поступают на вход наземного интерфейсного блока 2, который преобразует их в форму, удобную для передачи в ЭВМ, где осуществляется обработка поступившей информации в соответствии с заданным алгоритмом. В результате обработки по измеренным сигналам gi и mi получают искомые углы α, θ и ϕ, регистрируемые в ЭВМ 1, которые также через наземный интерфейсный блок 2 поступают в пульт бурильщика 3, осуществляющего визуальную индикацию текущих значений комплекса угловых параметров α, θ и ϕ пространственной ориентации бурового инструмента, жестко связанного с корпусом скважинного прибора. Циклическим опросом сигналов gi и mi, их аналого-цифровым преобразованием и преобразованием в последовательный помехоустойчивый код управляет скважинный блок управления 7.

Способ определения комплекса угловых параметров (α, θ и ϕ) пространственной ориентации бурового инструмента заключается в следующем. Априорно определяют численные значения малых угловых параметров (фиг. 1) χA, δXA, δYA, σ1A, σ2A для трехосевого акселерометра и χF, γf, δXF, δYF, σ1F, σ2F для трехосевого магнитометра, которые обусловлены разбросом размеров и полями допусков при изготовлении деталей и сборке трехосевого блока акселерометр/магнитометр, где:

- δХА - угол отклонения оси чувствительности акселерометра AX от оси 0ХА в плоскости 0XAZA;

- δYA - угол отклонения оси чувствительности акселерометра AY от оси 0YA в плоскости 0YAZA;

- χA и - угол отклонения оси чувствительности акселерометра AX от оси 0ХА в плоскости 0XAYA;

- σ1A - угол отклонения оси чувствительности акселерометра AZ от оси 0ZA в плоскости 0XAZA;

- σ2А - угол отклонения оси чувствительности акселерометра AZ от оси 0ZA в плоскости 0YAZA;

- δXF - угол отклонения оси чувствительности феррозонда FX от оси 0XF в плоскости 0XFZF;

- χF и - угол отклонения оси чувствительности феррозонда FX от оси 0XF в плоскости 0XFYF;

- δYF - угол отклонения оси чувствительности феррозонда FY от оси 0YF в плоскости OYFZF,

- γF - угол отклонения оси чувствительности феррозонда FY от оси 0YF в плоскости 0XFYF,

- σ1F - угол отклонения оси чувствительности феррозонда FZ от оси 0ZF в плоскости 0YFZF,

- σ2F - угол отклонения оси чувствительности феррозонда FZ от оси 0ZF в плоскости 0XFZF.

Далее осуществляют измерение сигналов gi и mi, характеризующих конкретное пространственное положение бурового инструмента, и передают в наземный интерфейсный блок помехоустойчивые коды Qj, пропорциональные сигналам gi и сигналам mi, а искомые угловые параметры (α, θ и ϕ) определяют следующим образом:

где

где

а mx, my, mz - приведенные значения измеренных сигналов с датчиков трехосевого магнитометра.

Пример конкретной реализации способа.

Определение искомых углов пространственной ориентации α, θ и ϕ производят на поверочной установке, например УАК-СИ-АЗВ, задавая различные положения корпуса скважинного прибора инклинометрической системы, и измеряя, и занося при этом в массив данных информационные сигналы с трехкомпонентных акселерометрических преобразователей и трехкомпонентных феррозондовых преобразователей инклинометрической системы. По значениям сигналов, хранящихся в массиве данных, рассчитывают искомые углы пространственной ориентации α, θ и ϕ с учетом априорно известных малых угловых параметров χA, δXA, δYA, σ1A, σ2А трехкомпонентного акселерометрического преобразователя и χF, γF, δXF, δYF, σ1F, σ2F трехкомпонентного феррозондового преобразователя, представленные в таблице 1.

Для проверки заявляемого способа с использованием инклинометрической системы ИС-48 на поверочной установке УАК-СИ-АЗВ заданы определенные пространственные положения корпуса скважинного прибора αз, θз и ϕз и проведены измерения сигналов с трехкомпонентного акселерометрического преобразователя и трехкомпонентного феррозондового преобразователя и рассчитаны углы пространственной ориентации αр, θР и ϕр, представленные в таблице 2.

Итак, заявляемое изобретение позволяет повысить точность определения искомых угловых параметров пространственной ориентации бурового инструмента - азимута, зенитного угла и угла положения отклонителя, путем учета малых угловых параметров χA, δXA, δYA, σ1A, σ2A для трехосевого акселерометра и χF, γF, δXF, δYF, σ1F, σ2F для трехосевого магнитометра при обработке инклинометрических данных.

Похожие патенты RU2610957C1

название год авторы номер документа
СПОСОБ КАЛИБРОВКИ ИНКЛИНОМЕТРИЧЕСКИХ СИСТЕМ 2015
  • Миловзоров Дмитрий Георгиевич
  • Ясовеев Васих Хаматович
RU2611567C1
СПОСОБ СКВАЖИННОЙ ИНКЛИНОМЕТРИИ И СКВАЖИННАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2021
  • Гарайшин Шамиль Гилемшинович
  • Коровин Валерий Михайлович
  • Каримова Эльвина Разитовна
RU2770874C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА, ЗЕНИТНОГО УГЛА И УГЛА МАГНИТНОГО НАКЛОНЕНИЯ 1997
  • Миловзоров Г.В.
RU2131029C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ СКВАЖИННОГО ПРИБОРА В БУРОВОЙ СКВАЖИНЕ 2011
  • Черменский Владимир Германович
  • Хаматдинов Вадим Рафисович
RU2482270C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ СКВАЖИНЫ 2014
  • Дмитрюков Алексей Юрьевич
RU2567064C1
ИНКЛИНОМЕТР 1998
  • Смирнов Б.М.
RU2172828C2
СПОСОБ ПОВЫШЕНИЯ ВИБРОУСТОЙЧИВОСТИ ИНКЛИНОМЕТРА 2013
  • Сокирский Григорий Степанович
  • Ширманов Михаил Иванович
  • Удовиченко Анатолий Иванович
  • Дьякович Владимир Богданович
RU2534866C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ И ПОЛОЖЕНИЯ ОТКЛОНИТЕЛЯ ПРИ БУРЕНИИ 2001
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Бондарь В.А.
  • Федоров С.Н.
RU2184845C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА И ЗЕНИТНОГО УГЛА СКВАЖИНЫ 2003
  • Харбаш В.Я.
  • Гуськов А.А.
  • Макаров В.Ф.
  • Школин Д.А.
  • Пивень О.А.
RU2250993C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2000
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Коловертнов Ю.Д.
  • Федоров С.Н.
RU2166084C1

Иллюстрации к изобретению RU 2 610 957 C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА УГЛОВЫХ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ БУРОВОГО ИНСТРУМЕНТА

Изобретение относится к области бурения наклонно направленных и горизонтальных скважин, в частности к определению угловых параметров пространственной ориентации бурового инструмента (азимута, зенитного угла и угла установки отклонителя в апсидальной плоскости). Технический результат: уменьшение погрешности измерений инклинометрических систем за счет учета малых угловых параметров отклонения осей чувствительности трехкомпонентных феррозондовых и акселерометрических датчиков инклинометрических систем от ортогональных осей при обработке результатов измерений. Сущность изобретения: в корпусе скважинного прибора устанавливают трехосевой блок акселерометр/магнитометр, с помощью которого осуществляют измерение проекций gx, gy, gz известного вектора ускорения силы тяжести, измеряют проекции mx, my, mz полного вектора напряженности геомагнитного поля, по которым определяют азимут α, зенитный θ и визирный ϕ углы. При этом используют априорно определенные численные значения малых угловых параметров отклонения осей чувствительности датчиков: χА, δХА, δYА, σ1А, σ2А для трехосевого акселерометра и χF, γF, δXF, δYF, σ1F, σ2F для трехосевого магнитометра. 2 ил., 2 табл.

Формула изобретения RU 2 610 957 C1

Способ определения направления скважины во время ее бурения с помощью трехосевого блока акселерометр/магнитометр, включающий установку в корпусе скважинного прибора трехосевого блока акселерометр/магнитометр, с помощью которого осуществляют измерение составляющих gx, gy, gz известного вектора ускорения силы тяжести, измеряют компоненты mх, mу, mz полного вектора напряженности геомагнитного поля, по которым определяют азимут α, зенитный θ и визирный ϕ углы, отличающийся тем, что используют априорно определенные численные значения малых угловых параметров χА, δXA, δYA, σ1А, σ2A для трехосевого акселерометра и χF, γF, δXF, δYF, σ1F, σ2F для трехосевого магнитометра, которые характеризуют отклонение осей чувствительности датчиков блока акселерометр/магнитометр от осей ортонормированных базисов корпуса скважинного прибора, определяют по измеренным сигналам gi(i=x,y,z) зенитный θ и визирный ϕ углы с учетом малых угловых параметров χA, δХA, δYА, σ1А, σ2А, а азимут α определяют по измеренным сигналам mi(i=x,y,z), вычисленным θ и ϕ с учетом малых угловых параметров χF, γF, δXF, δYF, σ1F, σ2F при этом зенитный θ и визирный ϕ углы определяют по формулам:

где

a gx, gy, gz - измеренные сигналы с датчиков трехосевого акселерометра, азимут α определяют по формуле:

где

a mх, mу, mz - приведенные значения измеренных сигналов с датчиков трехосевого магнитометра.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610957C1

СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ СКВАЖИНЫ (ВАРИАНТЫ) 1994
  • Николсон Джеймс Уилльям[Us]
RU2109943C1
СПОСОБ ИЗМЕРЕНИЯ ЗЕНИТНЫХ И АЗИМУТАЛЬНЫХ УГЛОВ 2002
  • Харбаш В.Я.
  • Белащенко Т.И.
  • Школин Д.А.
  • Пивень О.А.
RU2231638C1
СПОСОБ ОПРЕДЕЛЕНИЯ И КОМПЕНСАЦИИ МАГНИТНОЙ ДЕВИАЦИИ ИНКЛИНОМЕТРА 2000
  • Сидоров А.А.
  • Харбаш В.Я.
  • Шурыгин С.В.
RU2186966C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ И ПОЛОЖЕНИЯ ОТКЛОНИТЕЛЯ ПРИ БУРЕНИИ 2001
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Бондарь В.А.
  • Федоров С.Н.
RU2184845C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2012
  • Заико Александр Иванович
  • Иванова Галина Алексеевна
RU2503810C1
US 4813274 A1, 21.03.1989
СПОСОБ ЛАЗЕРНОГО ОБЛУЧЕНИЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ПОЛОСТИ БИОТКАНИ 2011
  • Алипов Владимир Владимирович
  • Акчурин Гариф Газизович
  • Лебедев Максим Сергеевич
  • Лебедева Екатерина Александровна
  • Добрейкина Евгений Алексеевич
  • Акчурин Георгий Гарифович
  • Алипов Никита Владимирович
RU2492882C2

RU 2 610 957 C1

Авторы

Миловзоров Дмитрий Георгиевич

Ясовеев Васих Хаматович

Морозова Елена Сергеевна

Даты

2017-02-17Публикация

2015-12-09Подача