УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ Российский патент 2001 года по МПК E21B47/22 

Описание патента на изобретение RU2166084C1

Изобретение относится к контролю за пространственным положением ствола обсаженных и не обсаженных буровых скважин при бурении.

Известны метод и устройства для определения азимутального и зенитного углов. Метод и устройство основаны на измерении трех ортогональных компонент Gx, Gy, Gz гравитационного поля 3х осевым акселерометром и трех ортогональных компонент Hx, Hy, Hz магнитного поля Земли 3х осевым магнитометром, информация с которых анализируется на ЭВМ и выдается на дисплей [Патент Великобритании N 2205166, 1988 г.].

Известен метод расчета пространственного расположения скважины по измерениям гравитационного (с помощью акселерометров) и магнитного (с помощью феррозондов) полей Земли. По этим измерениям вычисляют аксиальную компоненту магнитного поля Земли и с учетом компонент ускорения силы тяжести определяют пространственные компоненты скважины [Патент США N 4709486, 1987 г.].

Известен гироскопический датчик ориентации скважин. Датчик может использовать: гироскоп с одной степенью свободы, гироскоп с двумя степенями свободы, вибрационные гироскопы, акселерометры. Однако гироскопические датчики не работоспособны в процессе бурения, т.к. высокие вибрационные и ударные перегрузки, возникающие при бурении, а также угловые колебания бурового инструмента значительно превышают угловые скорости вращения Земли, на измерении которых и основаны перечисленные гироскопические приборы ориентации [Патент США N 4611405, 1986 г., патент США N 4706388, 1986 г.].

Наиболее близким техническим решением к заявляемому изобретению является устройство для определения углов искривления скважин, содержащее датчик азимута с тремя ортогональными феррозондами и датчик угла отклонения в виде двух или трех маятников, оси вращения которых ортогональны и неподвижно закреплены относительно корпуса устройства, выходы которых соединены с входами аналого-цифрового преобразователя [Авт. свид. СССР N 1139835, E 21 В 47/02, Бюл. N 6, 1985 г.].

Недостаток устройства для определения углов искривления скважин на основе феррозондов - невозможность ориентировать отклонитель по магнитному меридиану при бурении наклонно направленных и горизонтальных скважин малого диаметра из обсаженной скважины при восстановлении старых нефтяных и газовых месторождений.

Изобретение решает задачу повышения точности определения углов ориентации в процессе бурения и расширение функциональных возможностей.

Задача решается тем, что устройство для определения углов искривления скважин, содержащее скважинный снаряд, включающий блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, оси чувствительности которых коллинеарны осям чувствительности феррозондов, аналого-цифровой преобразователь и блок коммутаторов, к входам которого подключены выходы феррозондов и акселерометров, а выход блока коммутаторов подключен к наземному блоку, согласно изобретению снабжено датчиками температуры и давления, блоком телеметрии и блоком гироскопических датчиков азимута, состоящим из неподвижно закрепленных одноосных или двухосных датчиков угловой скорости вращения Земли, оси чувствительности коллинеарны осям чувствительности феррозондов и акселерометров, причем выходы датчиков температуры и давления и гироскопических датчиков угловой скорости вращения Земли подключены к соответствующим входам блока коммутаторов, выходы которого подключены соответственно к входам аналого-цифрового преобразователя и через блок телеметрии к наземному блоку.

На чертеже представлена блок-схема устройства.

Устройство содержит скважинный снаряд 1, включающий блок датчика азимута 2 на трех взаимно ортогональных феррозондах 3, блок датчиков углов отклонения 4, состоящий из трех взаимно ортогональных акселерометров 5, оси чувствительности которых коллинеарны осям чувствительности феррозондов, блок гироскопических датчиков азимута 6, состоящий: из трех 7 или двух неподвижно закрепленных одноосных гироскопических датчиков угловой скорости вращения Земли или двух или одного двухосного датчика угловой скорости вращения, оси чувствительности которых коллинеарны осям чувствительности соответствующих феррозондов и акселерометров. Датчики содержат встроенные измерительные схемы и другие схемы, необходимые для их работы. Блок коммутаторов 8 включает и блоки управления работой устройства. В скважинном снаряде размещены аналого-цифровой преобразователь 9, блок питания 10 электронных схем и датчиков, блок телеметрии 11, датчики температуры и давления 12. Наземный блок 13 содержит источник питания скважинного снаряда, блоки дешифрации сигналов и связи с ЭВМ 14.

После поступления с наземного блока 13 запускающего импульса на блок коммутаторов 8 подключаются блоки датчиков к аналого-цифровому преобразователю 9, который включается после окончания переходных процессов датчиков. Полученный параллельный код преобразуется в последовательный, и через блок телеметрии 11 и наземный блок 13 поступает в последовательный порт компьютера.

Для измерения зенитного угла, угла установки отклонителя, а также географического азимута используется блок акселерометров 4 и блок гироскопов 6. По ним контролируется выставка отклонителя в обсаженной скважине по заданному направлению. При отходе от скважины на 5-7 метров осуществляются измерения магнитного азимута по показаниям феррозондов 3 и акселерометров 5. При этом гироблок 6 выключается.

Величина зенитного θ угла установки отклонителя ϕ, магнитного αm и географического αг азимута вычисляются ЭВМ 14 согласно формулам [Ковшов Г.Н., Алимбеков Р. И. , Жибер А.В. Инклинометры (Основы теории и проектирования), Уфа, Гилем, 1998 г., 380 с.]:



b = a1·b1 + a2·b2 + a3·b3

b* = c1 · b1 + c2·b2 + c3· b3,
где ai, bi, ci, i = 1,2,3 - приведенные безразмерные сигналы с феррозондов, акселерометров и гироскопических датчиков угловой скорости вращения Земли, b, b* - тангенсы углов магнитного наклонения и географической широты устья скважины. Если используются из трех лишь любые два одностепенных датчиков ориентации, то показания третьего вычисляются из выражений:
a12 + a22 + a32 = 1 + c2
b12 + b22 + b32 = 1
c12 + с22 + c32 = 1 + b*2
Каждый гироскопический или магнитный инклинометр имеет свои блоки акселерометров, питания, АЦП, телеметрии, сопряжения с ЭВМ. Объединение датчиков в единую конструкцию устройства позволяет помимо упрощения решать и следующие практические задачи, расширяющие функциональные возможности устройства:
- феррозондовый блок при известном азимуте позволяет вычислять положение отклонителя непосредственно в процессе бурения, т.к. на показания феррозондов не сказываются вибрационные и ударные перегрузки,
- феррозондовый блок при известном азимуте позволяет контролировать критическое приближение к другой обсаженной скважине по измерению угла магнитного наклонения или величине модуля вектора напряженности магнитного поля Земли; это исключает аварийные ситуации,
- феррозондовый блок позволяет наводить буровой снаряд на ствол аварийной (горящей) скважины для ее ликвидации,
- феррозондовый блок при перемещении инклинометра в обсаженной скважине позволяет контролировать стенки обсадных труб, а также их целостность, что особенно актуально при возрождении старых месторождений.

Измерение температуры в скважинном снаряде позволяет непрерывно алгоритмически корректировать посредством ЭВМ показания датчиков ориентации при изменении температуры окружающей среды, чем достигается повышенная точность измерения в широком диапазоне температур от -10oC до +125oC.

Датчик гидростатического и гидродинамического давления позволяет при отсутствии прокачки бурового раствора уточнить глубину скважины, а при бурении - наличие зон повышенного или пониженного пластового давления. Недостаточная информация о пластовых давлениях может привести к неправильному выбору плотности промывочных жидкостей, возникновению нефтегазопроявлений при вскрытии пластов с аномально высокими пластовыми давлениями или к поглощению промывочной жидкости при вскрытии пластов с аномально низкими давлениями, что в любом случае приводит к возникновению аварийных ситуаций.

Лабораторные и скважинные испытания устройства показали, что погрешность измерения азимутов бурящейся скважины в широком диапазоне изменения температуры не превышают 2o, а погрешность измерения угла отклонения 0,2o.

Предлагаемое изобретение может быть использовано в нефтегазовой промышленности для измерений при бурении наклонно направленных и горизонтальных скважин, бурящихся из обсаженного ствола при возрождении старых месторождений и месторождений под поймами рек и водоемами.

Похожие патенты RU2166084C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ И ПОЛОЖЕНИЯ ОТКЛОНИТЕЛЯ ПРИ БУРЕНИИ 2001
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Бондарь В.А.
  • Федоров С.Н.
RU2184845C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2012
  • Заико Александр Иванович
  • Иванова Галина Алексеевна
RU2503810C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА УГЛОВЫХ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ БУРОВОГО ИНСТРУМЕНТА 2015
  • Миловзоров Дмитрий Георгиевич
  • Ясовеев Васих Хаматович
  • Морозова Елена Сергеевна
RU2610957C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА, ЗЕНИТНОГО УГЛА И УГЛА МАГНИТНОГО НАКЛОНЕНИЯ 1997
  • Миловзоров Г.В.
RU2131029C1
СПОСОБ ИЗМЕРЕНИЯ ПОЛНОГО ВЕКТОРА МАГНИТНОГО ПОЛЯ, А ТАКЖЕ УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Прищепов С.К.
  • Валитов К.Р.
RU2218577C2
ИНКЛИНОМЕТР (ВАРИАНТЫ) 1998
  • Смирнов Б.М.
RU2134427C1
СПОСОБ СКВАЖИННОЙ ИНКЛИНОМЕТРИИ И СКВАЖИННАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2021
  • Гарайшин Шамиль Гилемшинович
  • Коровин Валерий Михайлович
  • Каримова Эльвина Разитовна
RU2770874C1
ИНКЛИНОМЕТР 1998
  • Смирнов Б.М.
RU2172828C2
СИСТЕМА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЗАБОЙНЫХ СКВАЖИН 2001
  • Плотников П.К.
  • Никишин В.Б.
  • Мельников А.В.
  • Скрипкин А.А.
RU2204712C2
СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ СЕЙСМОПРИЕМНИКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Белянин Л.Н.
  • Голиков А.Н.
  • Мартемьянов В.М.
  • Плотников И.А.
  • Лебедев К.А.
  • Лаврухов В.Т.
RU2209449C1

Реферат патента 2001 года УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ

Изобретение относится к нефтедобывающей промышленности и предназначено для контроля за пространственным положением ствола обсаженных и необсаженных скважин при бурении. Техническим результатом изобретения является повышение точности определения углов ориентации в процессе бурения и расширение функциональных возможностей. Для этого устройство содержит блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, оси чувствительности которых коллинеарны осям чувствительности феррозондов, аналого-цифровой преобразователь и блок коммутаторов. К входам блока коммутаторов подключены выходы феррозондов и акселерометров. Выход блока коммутаторов подключен к наземному блоку через блок телеметрии. Дополнительно устройство снабжено датчиками температуры и давления, блоком телеметрии и блоком гироскопических датчиков азимута на основе одноосных или двухосных датчиков угловой скорости вращения Земли, оси чувствительности которых коллинеарны осям чувствительности феррозондов и акселерометров. Выходы датчиков температуры и давления и гироскопических датчиков угловой скорости подключены к дополнительным входам коммутаторов. 1 ил.

Формула изобретения RU 2 166 084 C1

Устройство для определения углов искривления скважин, содержащее скважинный снаряд, включающий блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков углов отклонения в виде трех ортогональных акселерометров, оси чувствительности которых коллинеарны осям чувствительности феррозондов, аналого-цифровой преобразователь и блок коммутаторов, к входам которого подключены выходы феррозондов и акселерометров, а выходы блока коммутаторов подключен к наземному блоку, отличающееся тем, что оно снабжено датчиками температуры и давления, блоком телеметрии и блоком гироскопических датчиков азимута, состоящим из неподвижно закрепленных одноосных или двухосных датчиков угловой скорости вращения Земли, оси чувствительности которых коллинеарны осям чувствительности феррозондов и акселерометров, причем выходы датчиков температуры и давления и гироскопических датчиков угловой скорости вращения Земли подключены к соответствующим входам блока коммутаторов, выходы которого подключены соответственно к входам аналого-цифрового преобразователя и через блок телеметрии к наземному блоку.

Документы, цитированные в отчете о поиске Патент 2001 года RU2166084C1

Устройство для определения углов искривления скважины 1982
  • Исаченко Валерий Харитонович
  • Ковшов Геннадий Николаевич
  • Лебедев Леонид Леонидович
  • Мелик-Шахназаров Александр Михайлович
  • Миловзоров Георгий Владимирович
  • Рыбаков Александр Николаевич
  • Сергеев Анатолий Николаевич
  • Фролов Валентин Григорьевич
  • Шумилов Леонид Петрович
SU1139835A1
Устройство для контроля зенитных углов и положения отклонителя в скважине 1983
  • Ковшов Геннадий Николаевич
  • Миловзоров Георгий Владимирович
  • Султанаев Рафаиль Аминович
SU1155733A1
Глубинное устройство для цифровой записи параметров траектории скважины 1980
  • Исаченко Валерий Харитонович
  • Шумилов Леонид Петрович
  • Лебедев Леонид Леонидович
  • Калинин Анатолий Георгиевич
  • Мелик-Шахназаров Александр Михайлович
  • Рыбаков Александр Николаевич
  • Фролов Валентин Григорьевич
  • Сушон Леонид Яковлевич
  • Борисенко Владимир Константинович
  • Петров Григорий Андреевич
  • Шентергер Владимир Михайлович
  • Лукьянов Эдуард Евгеньевич
SU903565A1
Способ определения азимута искривления траектории скважины 1988
  • Ураксеев Марат Абдуллович
  • Миловзоров Георгий Владимирович
  • Штанько Олег Николаевич
SU1555470A1
Автономный инклинометр 1988
  • Миловзоров Георгий Владимирович
  • Ураксеев Марат Абдуллович
  • Штанько Олег Николаевич
  • Смирнов Юрий Михайлович
SU1615348A1
ГИРОИНКЛИНОМЕТР 1994
  • Белянин Лев Николаевич
  • Голиков Алексей Никандрович
  • Мартемьянов Владимир Михайлович
  • Самойлов Сергей Николаевич
RU2078204C1
БЕСКАРДАННЫЙ ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ВЫРАБОТКИ ИНКЛИНОМЕТРИЧЕСКИХ УГЛОВ 1994
  • Андрианов Ю.М.
  • Богомолов О.Д.
  • Вечтомов В.М.
  • Герасимов Н.В.
  • Люсин Ю.Б.
  • Пензин Л.И.
  • Пуляевский Г.Г.
  • Сабаев В.Ф.
  • Саенко В.А.
  • Чичинадзе М.В.
  • Шульман И.Ш.
RU2101487C1
US 4844923 A, 23.01.1990
ПРОЗРАЧНАЯ И ГИБКАЯ КОМПОЗИЦИЯ ПРОПИЛЕНОВЫХ ПОЛИМЕРОВ И ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ НЕЕ 2002
  • Пелликони Антео
  • Лонардо Анджело
  • Мей Габриеле
RU2296772C2
СПОСОБ ЛАЗЕРНОГО ОБЛУЧЕНИЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ПОЛОСТИ БИОТКАНИ 2011
  • Алипов Владимир Владимирович
  • Акчурин Гариф Газизович
  • Лебедев Максим Сергеевич
  • Лебедева Екатерина Александровна
  • Добрейкина Евгений Алексеевич
  • Акчурин Георгий Гарифович
  • Алипов Никита Владимирович
RU2492882C2
СПОСОБ ОЦЕНКИ ВЫНОСЛИВОСТИ СПОРТСМЕНА В ИГРОВЫХ ВИДАХ СПОРТА 2016
  • Афоньшин Владимир Евгеньевич
RU2615899C1
DE 3135743 A1, 19.05.1982
Бесколесный шариковый ход для железнодорожных вагонов 1917
  • Латышев И.И.
SU97A1
Машина для формования железобетонных тонкостенных пространственных криволинейных покрытий сводов двойной кривизны 1957
  • Бузницкий Е.В.
  • Дегтяр Э.М.
  • Фельдшон З.Д.
  • Цейтлин А.А.
SU109830A1

RU 2 166 084 C1

Авторы

Ковшов Г.Н.

Коловертнов Г.Ю.

Коловертнов Ю.Д.

Федоров С.Н.

Даты

2001-04-27Публикация

2000-07-14Подача