Изобретение относится к области нанотехнологии, медицине, фармакологии, фармацевтике и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул адаптогенов, отличающийся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - адаптогены (экстракты элеутерококка, жень-шеня, лимонник японский, аралия, родиола розовая) при получении нанокапсул методом осаждения нерастворителем с применением бутилхлорида в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки нанокапсул и адаптогенов - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул адаптогенов.
ПРИМЕР 1. Получение нанокапсул экстракта элеутерококка, соотношение ядро:оболочка 1:3
100 мг экстракта элеутерококка добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул экстракта элеутерококка, соотношение ядро:оболочка 5:1
500 мг экстракта элеутерококка добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 100 мг полимера, в присутствии 0,01 г препарата E472c в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 6 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул экстракта жень-шеня, соотношение ядро:оболочка 1:3
100 мг экстракта жень-шеня добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 300 мг полимера, в присутствии 0,01 г препарата E472c в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4 Получение нанокапсул экстракта жень-шеня, соотношение ядро:оболочка 5:1
500 мг экстракта жень-шеня добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 100 мг полимера, в присутствии 0,01 г препарата E472c в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 6 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул экстракта лимонника китайского, соотношение ядро:оболочка 1:3
500 мг экстракта лимонника китайского добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 1500 мг полимера, в присутствии 0,01 г препарата E472c в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2.0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул экстракта родиолы розовой, соотношение ядро:оболочка 1:3
500 мг экстракта родиолы розовой добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 1500 мг полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2.0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7, Получение нанокапсул экстракта аралии, соотношение ядро:оболочка 1:3
500 мг экстракта аралии добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле, содержащую указанного 1500 мг полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2.0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В КСАНТАНОВОЙ КАМЕДИ | 2015 |
|
RU2586612C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В КАРРАГИНАНЕ | 2015 |
|
RU2596479C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АГАР-АГАРЕ | 2015 |
|
RU2603457C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ | 2015 |
|
RU2596482C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В ГЕЛЛАНОВОЙ КАМЕДИ | 2015 |
|
RU2597153C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ | 2015 |
|
RU2598748C1 |
Способ получения нанокапсул адаптогенов в агар-агаре | 2016 |
|
RU2633748C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ | 2014 |
|
RU2575564C1 |
Способ получения нанокапсул адаптогенов в каррагинане | 2014 |
|
RU2607386C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В ПЕКТИНЕ | 2015 |
|
RU2590693C1 |
Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул адаптогенов. В качестве оболочки нанокапсул используют натрий карбоксиметилцеллюлозу. Согласно способу по изобретению экстракт адаптогена, выбранный из элеутерококка, женьшеня, лимонника китайского, родиолы розовой, аралии, добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле в присутствии препарата Е472с при массовом соотношении ядро:оболочка 1:3 или 5:1 соответственно. Затем перемешивают и добавляют бутилхлорид. Полученную суспензию нанокапсул отфильтровывают и сушат. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при их получении (увеличение выхода по массе). 1 ил., 8 пр.
Способ получения нанокапсул адаптогенов, заключающийся в том, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - экстракт адаптогена, выбранный из элеутерококка, женьшеня, лимонника китайского, родиолы розовой, аралии, при массовом соотношении ядро:оболочка 1:3 или 5:1 соответственно, при этом экстракт адаптогена добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле в присутствии препарата Е472с при перемешивании 1300 об/мин, затем добавляют бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре.
СОЛОДОВНИК В | |||
Д | |||
"Микрокапсулирование",-М.:Химия, 1980.- 216стр., стр.136-139 | |||
Способ получения микрокапсул | 1978 |
|
SU676316A1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
WO 1987001587 А1, 26.03.1978 | |||
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ В ДИЭТИЛОВОМ ЭФИРЕ | 2012 |
|
RU2482849C1 |
Авторы
Даты
2016-10-20—Публикация
2015-04-14—Подача