Изобретение относится к способам получения соединений на основе солей поливалентных металлов, в частности аморфного фосфата титана, который может быть использован в качестве сорбента различных катионов из водно-солевых растворов.
Известные способы получения аморфного фосфата титана не обеспечивают формирование продукта с высокими показателями сорбционной емкости. Это обусловлено недостаточно развитой поровой системой частиц, формирующихся в жидкофазном процессе взаимодействия титансодержащих растворов и фосфорной кислоты, а также длительностью контактирования образующихся осадков с водой при их промывке, приводящей к гидролизу и уменьшению количества ионообменных центров.
Известен способ получения фосфата титана (см. пат. 219462 СССР, МПК6 С01В 25/37, 1968), включающий обработку оксида титана 98% серной кислотой в присутствии сульфата аммония, взятого в 5-10-кратном избытке по отношению к количеству оксида титана. Обработку ведут при температуре 180-200°C с получением раствора титанилсульфата аммония, который охлаждают и обрабатывают 30-60% раствором фосфорной кислоты. Реакционную смесь перемешивают, при этом температура самопроизвольно поднимается до 90-100°C. Выпавший осадок в виде геля разбавляют водой, отфильтровывают, промывают водой до отсутствия в фильтрате кислоты и сушат. Полученный продукт представляет собой фосфат титана в виде кристаллических зерен, сорбционная емкость которого составляет 0,435 мг-экв/г по ионам цезия.
Известный способ характеризуется относительно невысокой сорбционной емкостью получаемого фосфата титана, обусловленной его кристаллической структурой. Разбавление геля и последующая его водная промывка ведет к образованию значительного количества кислых стоков, что ухудшает экологичность способа. Кроме того, наличие операции получения раствора титанилсульфата аммония с использованием оксида титана, серной кислоты и сульфата аммония усложняет способ.
Известен также принятый в качестве прототипа способ получения фосфата титана (см. а.с. 1265140 СССР, МПК4 С01В 25/26, 1986), согласно которому раствор титанилсульфата аммония смешивают с фосфорной кислотой, взятой из расчета 1 г 100% H3PO4 на 1 г TiO2 (TiO2:P2O5=1:1,45), в присутствии соединений, содержащих фтор-ионы. В качестве соединений, содержащих фтор-ионы, используют фториды щелочных металлов в количестве 0,5-10 мас. % от массы соединения титана в пересчете на двуокись титана. Взаимодействие ведут в течение 20 минут с получением аморфного титанофосфатного осадка. Осадок отделяют фильтрацией, промывают водой и сушат при температуре 200°C. Полученный фосфат титана имеет удельную поверхность 120-190 м2/г. Сорбционная емкость продукта по ионам натрия составляет 0,52-0,64 мг-экв/г.
Известный способ характеризуется недостаточно высокой сорбционной емкостью получаемого фосфата титана, обусловленной пониженными значениями удельной поверхности и пористости. Отделение фильтрацией полученного аморфного осадка сопровождается образованием значительного количества кислых стоков, что отрицательно сказывается на экологичности способа.
Настоящее изобретение направлено на достижение технического результата, заключающегося в увеличении сорбционных свойств фосфата титана за счет повышения удельной поверхности и пористости частиц фосфата титана, а также в улучшении экологичности способа.
Технический результат достигается тем, что в способе получения фосфата титана, включающем смешение титанилсульфата аммония с фосфорной кислотой с образованием аморфного титанофосфатного полупродукта, его промывку водой и термообработку, согласно изобретению, титанилсульфат аммония берут в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO2:P2O5=1:1,75-2,5, полученную смесь выдерживают в течение 3,5-10 часов с образованием титанофосфатного полупродукта, который после водной промывки обрабатывают раствором щелочного реагента до обеспечения рН 3,5-6, а термообработку ведут при 60-100°C.
Достижению технического результата способствует то, что в качестве щелочного реагента используют карбонат натрия или карбонат аммония.
Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.
Введение титанилсульфата аммония в твердом виде в 10-50% раствор фосфорной кислоты способствует формированию крупнодисперсных (15-45 мкм) частиц титанофосфатного полупродукта и позволяет уменьшить объем кислых стоков. Концентрация раствора фосфорной кислоты менее 10% приводит к частичному растворению титанилсульфата аммония, что снижает дисперсность титанофосфатного полупродукта, а концентрация более 50% не обеспечивает эффективного контактирования компонентов, что уменьшает выход конечного продукта.
Массовое отношение TiO2:P2O5=1:1,75-2,5 обеспечивает формирование титанофосфатного полупродукта, состоящего из частиц с развитой поверхностью и пористостью, что способствует повышению сорбционных свойств фосфата титана. Расход P2O5 менее 1,75 по отношению к TiO2 приводит к снижению пористости частиц, а расход Р2О5 более 2,5 является избыточным и не ведет к улучшению свойств сорбента.
Выдержка полученной реакционной смеси в течение 3,5-10 часов ведет к образованию компактного титанофосфатного полупродукта и стабилизирует его структуру с обеспечением узкого интервала размера пор. Это позволяет получать продукт с гарантированно высокими сорбционными свойствами, а также снизить расход кислых стоков при последующей промывке. Выдержка смеси в течение менее 3,5 часов приводит к расширению интервала размера пор с превалированием микропор, которые не участвуют в сорбционном процессе, что снижает сорбционную емкость. Выдержка смеси в течение более 10 часов повышает количество макропор с низкой сорбционной активностью из-за недостатка функциональных обменных групп.
Обработка титанофосфатного полупродукта раствором щелочного реагента до обеспечения рН 3,5-6 позволяет регулировать кислотность получаемого фосфата титана и тем самым расширить область его эффективного использования в различных средах. Обработка щелочным реагентом до рН ниже 3,5 ограничивает использование фосфата титана в средах с повышенным рН, а обработка до рН выше 6 ведет к снижению сорбционной емкости за счет уменьшения количества фосфатных функциональных групп.
Термообработка титанофосфатного полупродукта при 60-100°C обеспечивает удаление свободной воды и регулирование поровой системы. Термообработка при температуре ниже 60°C приводит к избыточному количеству в продукте свободной воды, что снижает число функциональных групп, а термообработка при температуре выше 100°C приводит к слипанию частиц фосфата титана и к снижению сорбционных свойств за счет снижения величины удельной поверхности.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в увеличении сорбционных свойств фосфата титана за счет повышения удельной поверхности и пористости частиц, а также в улучшении экологичности способа.
В частных случаях осуществления изобретения предпочтительно использовать в качестве щелочного реагента карбонат натрия или карбонат аммония, что позволяет проводить щелочную обработку в более мягких условиях, чем в случае использования натриевой щелочи.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения получения фосфата титана с повышенными сорбционными свойствами.
Сущность заявляемого способа может быть пояснена следующими примерами.
Пример 1. Берут 1000 г твердого порошкообразного титанилсульфата аммония (содержание TiO2 - 200 г) и вводят его в 10% раствор фосфорной кислоты (2,45 л), взятой из расчета обеспечения массового отношения TiO2:P2O5=1:1,75. Полученную смесь выдерживают в течение 3,5 часов с образованием аморфного титанофосфатного полупродукта. Затем титанофосфатный полупродукт промывают водой при Т:Ж=1:5,5 и обрабатывают раствором карбоната натрия до обеспечения рН 3,5. После этого осуществляют термообработку при 60°C с получением аморфного фосфата титана в количестве 808 г. Удельная поверхность фосфата титана - 235 м2/г, общий объем пор - 0,6 см3/г, сорбционная емкость по ионам, мг-экв/г: Na - 2,0, Cs - 0,95, Sr - 0,67, Cu - 1,13. Количество образовавшихся кислых стоков - 4,4 л.
Пример 2. Берут 1000 г твердого порошкообразного титанилсульфата аммония (содержание TiO2 - 200 г) и вводят его в 30% раствор фосфорной кислоты (0,8 л), взятой из расчета обеспечения массового отношения TiO2:P2O5=1:2. Полученную смесь выдерживают в течение 5 часов с образованием аморфного титанофосфатного полупродукта. Затем титанофосфатный полупродукт промывают водой при Т:Ж=1:4 и обрабатывают раствором карбоната натрия до обеспечения рН 4,5. После этого осуществляют термообработку при 80°C с получением аморфного фосфата титана в количестве 790 г. Удельная поверхность фосфата титана - 289 м2/г, общий объем пор - 0,69 см3/г, сорбционная емкость по ионам, мг-экв/г: Na - 2,5, Cs - 1,12, Sr - 1,2, Cu - 1,62. Количество образовавшихся кислых стоков - 3,1 л.
Пример 3. Берут 1000 г твердого порошкообразного титанилсульфата аммония (содержание TiO2 - 200 г) и вводят его в 50% раствор фосфорной кислоты (0,55 л), взятой из расчета обеспечения массового отношения TiO2:P2O5=1:2,5. Полученную смесь выдерживают в течение 10 часов с образованием аморфного титанофосфатного полупродукта. Затем титанофосфатный полупродукт промывают водой при Т:Ж=1:3,5 и обрабатывают раствором карбоната аммония до обеспечения рН 6. После этого осуществляют термообработку при 100°C с получением аморфного фосфата титана в количестве 790 г. Удельная поверхность фосфата титана - 217 м2/г, общий объем пор - 0,5 см3/г, сорбционная емкость по ионам, мг-экв/г: Na - 1,8, Cs - 0,75, Sr - 0,5, Cu - 0,78. Количество образовавшихся кислых стоков - 2,75 л.
Для сопоставительного анализа ниже приведен Пример 4 по прототипу, в котором содержание TiO2 (200 г) в растворе титанилсульфата аммония соответствует его содержанию в Примерах 1-3.
Пример 4 (по прототипу). Берут 10 л раствора титанилсульфата аммония (содержание TiO2 - 200 г), добавляют в него 16 г фторида натрия и смешивают с фосфорной кислотой, взятой из расчета 1 г 100% Н3РО4 на 1 г TiO2 (TiO2:P2O5=1:1,45). Взаимодействие компонентов ведут в течение 20 минут с получением аморфного титанофосфатного осадка. Осадок отделяют фильтрацией, промывают водой и сушат при температуре 200°C. Полученный фосфат титана в количестве 550 г имеет удельную поверхность 180 м2/г. Сорбционная емкость продукта по иону натрия составляет 0,64 мг-экв/г. Количество образовавшихся кислых стоков - 8 л.
Из приведенных Примеров видно, что заявляемый способ позволяет повысить характеристики и сорбционные свойства получаемого фосфата титана, в частности, удельная поверхность фосфата титана повышается до 289 м2/г, а сорбционная емкость по иону Na - до 2,5 мг-экв/г, что, соответственно, в 1,6 раза и в 3,9 раза выше, чем по прототипу. Количество кислых стоков сокращается в 1,8 раза. Способ согласно изобретению может быть реализован на стандартном оборудовании, а полученный продукт - эффективно использован на объектах гражданского и оборонного профиля.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения фосфата титана | 2017 |
|
RU2647304C1 |
Способ получения фосфата титана | 2022 |
|
RU2788602C1 |
СПОСОБ ПЕРЕРАБОТКИ ТИТАНСОДЕРЖАЩЕГО КОНЦЕНТРАТА | 2008 |
|
RU2367605C1 |
СПОСОБ ПЕРЕРАБОТКИ ТИТАНСОДЕРЖАЩЕГО КОНЦЕНТРАТА | 2001 |
|
RU2207980C1 |
Способ переработки сфенового концентрата с получением титанфосфатной кремнийсодержащей композиции | 2021 |
|
RU2754149C1 |
Способ переработки сфенового концентрата | 2017 |
|
RU2665759C1 |
СПОСОБ ПЕРЕРАБОТКИ СФЕНОВОГО КОНЦЕНТРАТА | 2003 |
|
RU2235685C1 |
СПОСОБ ПЕРЕРАБОТКИ ТИТАНСОДЕРЖАЩЕГО КОНЦЕНТРАТА | 2011 |
|
RU2467953C1 |
СПОСОБ ПЕРЕРАБОТКИ СФЕНОВОГО КОНЦЕНТРАТА | 2006 |
|
RU2323881C1 |
Способ получения сорбента на основе доломита | 2020 |
|
RU2743359C1 |
Изобретение может быть использовано в производстве сорбента катионов из водно-солевых растворов. Для получения фосфата титана берут титанилсульфат аммония в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO2:P2O5=1:(1,75-2,5). Полученную смесь выдерживают в течение 3,5-10 ч с образованием аморфного титанофосфатного полупродукта. После водной промывки титанофосфатный полупродукт обрабатывают раствором щелочного реагента до обеспечения рН 3,5-6. В качестве щелочного реагента используют карбонат натрия или карбонат аммония. После этого осуществляют термообработку при 60-100°C. Изобретение позволяет получить фосфат титана с высокими сорбционными свойствами, повысить его удельную поверхность до 289 м2/г, сократить количество кислых стоков в 1,8 раза. 1 з.п. ф-лы, 4 пр.
1. Способ получения фосфата титана, включающий смешение титанилсульфата аммония с фосфорной кислотой с образованием аморфного титанофосфатного полупродукта, его промывку водой и термообработку, отличающийся тем, что титанилсульфат аммония берут в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO2:P2O5=1:(1,75-2,5), полученную смесь выдерживают в течение 3,5-10 часов с образованием титанофосфатного полупродукта, который после водной промывки обрабатывают раствором щелочного реагента до обеспечения рН 3,5-6, а термообработку ведут при 60-100°С.
2. Способ по п. 1, отличающийся тем, что в качестве щелочного реагента используют карбонат натрия или карбонат аммония.
Способ получения фосфата титана | 1983 |
|
SU1265140A1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА НА ОСНОВЕ ФОСФАТА ТИТАНА | 2003 |
|
RU2246985C1 |
Способ получения фосфата титана | 1989 |
|
SU1611906A1 |
Способ получения фосфата титана | 1981 |
|
SU1047832A1 |
US 3558273 A1, 26.01.1971 | |||
US 3556720 A1, 19.01.1971. |
Авторы
Даты
2016-08-27—Публикация
2015-06-15—Подача