СПОСОБ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКОГО ЦИС-1,4-ПОЛИИЗОПРЕНА И ПОЛИИЗОПРЕН, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ Российский патент 2016 года по МПК C08F6/12 C08C2/06 C08F136/08 

Описание патента на изобретение RU2603643C1

Изобретение относится к нефтехимической промышленности, в частности к выделению водной дегазацией растворных синтетических каучуков (СК), используемых в производствах шин и резинотехнических изделий и получаемых полимеризацией в растворах углеводородов, а точнее к способу выделения синтетического полиизопрена.

Известен способ выделения цис-1,4-полиизопрена, по которому изопреновый каучук выделяют путем подачи полимеризата из усреднителя в интенсивные смесители, где происходит образование водной эмульсии полимеризата. Для этого в смеситель вводят циркуляционную воду в количестве 20% от объема полимеризата, заправленную антиагломератором и 2%-ным раствором едкого калия для поддержания рН 7-8. Остальное количество циркуляционной воды подается во второй интенсивный смеситель. Образовавшаяся эмульсия полимеризата через инжектор, куда поступает пар, направляется в двухступенчатый дегазатор. Таким образом, система фондообразования включает три аппарата - два смесителя и инжектор. Из верхней части дегазатора отводятся пары углеводородов и воды и подаются на конденсацию. Из нижней части дегазатора выводится пульпа каучука, которая подается в концентратор крошки и далее на выделение и сушку каучука. В данном способе выделения каучука в качестве антиагломератора используется стеарат кальция, который готовится с использованием стеариновой кислоты, частично умягченной воды, едкого калия и хлорида кальция. (Кирпичников П.А. и др. Альбом технологических схем основных производств промышленности синтетического каучука. Л.: Химия, 1986, стр. 132-137).

Недостатками указанного способа являются применение энергоемких интенсивных смесителей и необходимость приготовления антиагломератора на отдельной технологической установке, которые усложняют технологический процесс, приводят к увеличению потребления энергетических и сырьевых ресурсов, что повышает себестоимость готового продукта.

Также известен способ выделения синтетического полиизопрена путем подачи полимеризата из усреднителя насосом в крошкообразователь, куда для образования крошки каучука подается острый пар и умягченная вода. Крошка каучука далее поступает в верхнюю часть дегазатора. На дегазацию вместе с полимеризатом подается также суспензия антиагломератора в воде. В качестве антиагломератора используют гидрооксиды металлов (например, Zn(OH)2), соли жирных кислот (стеарат кальция) и др. (Башкатов Т.В., Жигалин Я.Л. Технология синтетических каучуков. Л.: Химия, 1987, стр. 158-160).

Недостатками указанного способа являются необходимость в отдельной стадии приготовления водной суспензии антиагломератора, которая усложняет технологический процесс, приводит к увеличению потребления энергетических и сырьевых ресурсов, что повышает себестоимость готового продукта, а также недостаточная степень антиагломерации крошки каучука, т.к. антиагломератор подается только в дегазатор.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения синтетического полиизопрена, пригодный также для получения других растворных СК, по которому полимеризат и часть горячей циркуляционной воды в количестве 10-30 мас. % в расчете на полимеризат перед подачей в крошкообразователь подвергают интенсивному смешению и подают в крошкообразователь в условиях турбулентного движения, а оставшуюся часть циркуляционной воды и пар вместе с приготовленной отдельно щелочной суспензией стеарата кальция в качестве антиагломератора подают непосредственно в крошкообразователь (RU 2235732, кл. C08F 136/08, опубл. 10.09.2004 г.).

Недостатками указанного способа являются:

- наличие специального контура для постоянного и точного регулирования соотношения потоков полимеризата и циркуляционной воды, а также необходимость приготовления водной суспензии антиагломератора стеарата кальция на отдельной технологической установке, которые усложняют технологический процесс, приводят к увеличению потребления энергетических и сырьевых ресурсов, что повышает себестоимость готового продукта.

- использование хлорида кальция для превращения калиевого мыла в суспензию стеарата кальция, что приводит к высокому содержанию в сточных водах производства хлоридов калия и кальция и создает нагрузку на очистные сооружения;

- меньшая когезионная прочность невулканизованных углероднаполненных резиновых смесей на основе синтетического цис-1,4-полиизопрена, получаемого способом по прототипу, при использовании в производстве шин и резинотехнических изделий в чистом виде или в смесях с другими каучуками по сравнению с этим показателем для резиновых смесей с использованием натурального полиизопрена (НК), что затрудняет технологические операции сборки шин, и невысокие показатели упруго-прочностных свойств наполненных техуглеродом резин с его использованием;

- меньшие значения показателей прочности связи с латунированным металлокордом и ее сохранения после теплового старения у брекерных резиновых смесей, изготавливаемых с использованием НК в смеси с синтетическим цис-1,4-полиизопреном.

Техническим результатом предлагаемого изобретения является снижение энергозатрат при выделении синтетического цис 1,4-полиизопрена, упрощение технологической схемы его производства, улучшение качества сточных вод по содержанию солей и повышение качества получаемого синтетического полиизопрена.

Для достижения технического результата предлагается способ выделения синтетического цис-1,4-полиизопрена из раствора в углеводородном растворителе водной дегазацией в крошкообразователе и дегазаторе путем смешения полимеризата, горячей циркуляционной воды и пара в присутствии антиагломератора с выводом образующихся паров дегазации на конденсацию и выделением каучука из образовавшейся водной дисперсии с последующей его сушкой, отличающийся тем, что на всасывающий патрубок центробежного насоса, подающего горячую циркуляционную воду в крошкообразователь, дозированием на тонну сухого выделяемого каучука в количестве от 6,0 до 20,0 кг вводят антиагломератор, представляющий собой 5-20 мас. % раствор в минеральном масле смешанной кальциевой соли стеариновой и полиалкилбензолсульфоновой кислоты с алкильным радикалом с числом углеродных атомов в интервале C12-C26 при массовом соотношении кислот в процессе синтеза антиагломератора в интервале от 1:1 до 1:3.

Отличием предлагаемого способа является отсутствие отдельной технологической установки по его приготовлению, что способствует меньшему расходу сырьевых и энергоресурсов, уменьшению производственных площадей. Кроме того, по предлагаемому способу снижается загрязнение сточных вод производства хлоридами калия и кальция. Поскольку по данному изобретению готовый раствор антиагломератора в минеральном масле вместо суспензии твердых частиц стеарата кальция по прототипу с помощью дозирующих насосов подается непосредственно на высокооборотный центробежный насос вместе с горячей циркуляционной водой, то после центробежного насоса образуется однородная и более разбавленная эмульсия антиагломератора в воде, что обеспечивает более равномерное смачивание ею поверхности выделяемой крошки каучука при меньших расходных нормах действующего вещества и более эффективную антиагломерацию крошки.

Предлагаемый способ выделения каучуков растворной полимеризации иллюстрируется следующими примерами.

Пример 1 (сравнительный, прототип).

Отмытый от остатков каталитического комплекса усредненный полимеризат полиизопрена насосом качают в крошкообразователь. На всас насоса подают горячую циркуляционную воду, заправленную стеаратом кальция в количестве 0,88 мас. % в расчете на сухой полимер, для интенсивного перемешивания и предварительного подогрева полимеризата. В крошкообразователь подают острый водяной пар и оставшуюся часть циркуляционной воды, также заправленной стеаратом кальция. Полученную смесь направляют в двухступенчатый дегазатор, где происходит отпарка углеводородов из водной дисперсии крошки каучука. Из дегазатора пары углеводородов направляют на конденсацию. Дегазированную крошку каучука в виде водной дисперсии направляют на машины выделения каучука и далее на сушку.

Пример 2

Отмытый от остатков каталитического комплекса усредненный полимеризат полиизопрена насосом качают в крошкообразователь. На всасывающий патрубок насоса, качающего горячую циркуляционную воду, с помощью дозирующего насоса производительностью 50 литров в час через расходомер подают антиагломератор, представляющий собой 20% раствор в минеральном масле смешанной кальциевой соли стеариновой и полиалкилбензолсульфоновой кислоты с алкильным радикалом с числом углеродных атомов в интервале С1226 при массовом соотношении кислот в процессе синтеза антиагломератора 1:1, при дозировке антиагломератора 6 кг на тонну каучука в сухом весе. В крошкообразователь подают острый водяной пар. Полученную смесь направляют в двухступенчатый дегазатор, где происходит отпарка углеводородов из водной дисперсии крошки каучука. Из дегазатора пары углеводородов направляют на конденсацию. Дегазированную крошку каучука в виде водной дисперсии направляют на машины выделения каучука и далее на сушку.

Пример 3

Отмытый от остатков каталитического комплекса усредненный полимеризат полиизопрена насосом качают в крошкообразователь. На всасывающий патрубок насоса, качающего горячую циркуляционную воду, с помощью дозирующего насоса производительностью 50 литров в час через расходомер подают антиагломератор по настоящему изобретению, представляющий собой 9,5 мас. % раствор в минеральном масле смешанной кальциевой соли стеариновой и полиалкилбензолсульфоновой кислоты с алкильным радикалом с числом углеродных атомов в интервале С1226 при массовом соотношении кислот в процессе синтеза антиагломератора 1:3, при дозировке антиагломератора 12 кг на тонну каучука в сухом весе. В крошкообразователь подают острый водяной пар. Далее процесс ведут, как в Примерах 1 и 2

Пример 4

Процесс выделения ведут, как в Примерах 2 и 3. На всасывающий патрубок насоса, качающего горячую циркуляционную воду, с помощью дозирующего насоса производительностью 50 литров в час через расходомер подают антиагломератор, представляющий собой 5 мас. % раствор в минеральном масле смешанной кальциевой соли стеариновой и полиалкилбензолсульфоновой кислоты с алкильным радикалом с числом углеродных атомов в интервале C12-C26 при массовом соотношении кислот в процессе синтеза антиагломератора 1:2, при дозировке антиагломератора 20 кг на тонну каучука в сухом весе. Далее процесс ведут, как в Примере 1 и 2.

Результаты определения параметров выделения крошки полиизопрена по приведенным примерам представлены в табл. 1. Из данных табл. 1 видно, что за счет исключения использования в качестве антиагломератора - суспензии стеарата кальция по прототипу получают щелочность сточной воды,

Полученные результаты представлены в табл. 2.

Как видно из данных табл. 2, по показателям прочности при 23 и 100°С образцы ненаполненных резиновых смесей на основе полиизопрена, выделенного способом по предлагаемому изобретению, превосходят каучук по прототипу.

Из образцов выделенного по Примерам 1-4 синтетического полиизопрена на вальцах при 75±5°С изготавливают, руководствуясь стандартом ASTM D 3403, резиновые смеси, содержащие в мас. ч. на 100 мас. ч. полиизопрена: оксид цинка - 5,0, стеариновую кислоту - 2,0, технический углерод N 330-35. Серу и ускоритель типа TBBS (сульфенамид Т или его аналоги) в изготавливаемые смеси не вводят, чтобы избежать начала их структурирования при дальнейшем прогреве для определения когезионной прочности по методике, изложенной в п. 4.5.2 Технических условий 38.1-34433-90 «Каучук синтетический цис-изопреновый модифицированный СКИ-3-01». Резиновые смеси выпускают с вальцев в виде пластин толщиной 2 мм.

Далее, руководствуясь п. 4.5.2 Технических условий 38.1-34433-90, изготовленные из образцов выделенного по Примерам 1-4 синтетического полиизопрена пластины из невулканизованных резиновых смесей прогревают в термостате в течение 80 минут при 100°С и после выдержки в течение 60 минут при комнатной температуре подвергают испытаниям с определением в образцах условного напряжения при 300% удлинения (МПа), условной прочности при растяжении (МПа) и относительного удлинения при разрыве в %. Результаты испытаний представлены в табл. 3. Как видно из данных табл. 3, образцы полиизопрена, выделенного способом по настоящему изобретению, превосходят образец, выделенный способом по прототипу, по показателю когезионной прочности углероднаполненных резиновых смесей, полученных с использованием этих образцов, на 66-97%.

Синтетический полиизопрен, полученный по примеру 3, испытывают в составе брекерной резиновой смеси, используемой в производстве легковых радиальных шин, наряду с полиизопреном по прототипу и с комбинацией НК и полиизопрена по прототипу, взятых в соотношении 60:40. Порядок ввода ингредиентов и продолжительность смешения соответствуют режиму, принятому для изготовления брекерной резины для легковых радиальных шин в их производстве. Вулканизацию проводят в гидравлическом прессе с паровым обогревом в течение оптимального времени согласно ГОСТ 12535-84.

Физико-механические испытания проводят в соответствии со следующими стандартами:

п. 4.5.2 Технических условий 38.1-34433-90 «Каучук синтетический цис-изопреновый модифицированный СКИ-3-01» - Испытание резиновой смеси. Получаемый показатель характеризует когезионную прочность;

ГОСТ 270-75. Метод определения упруго-прочностных свойств при растяжении;

ГОСТ 282-79. Метод определения сопротивления раздиру;

ГОСТ 14863-79. Метод определения прочности связи резина-корд;

ГОСТ 261-79 Резина. Методы определения усталостной выносливости при многократном растяжении;

ГОСТ 20418-75 Резина. Методы определения теплообразования, остаточной деформации и усталостной выносливости при многократном сжатии.

Полученные результаты представлены в табл. 4.

Как следует из данных табл. 4, брекерные резиновые смеси для крепления к латунированному металлокорду, изготовленные из полиизопрена по изобретению, превосходят смеси, изготовленные из полиизопрена по прототипу, а также - из комбинации НК и полиизопрена по прототипу, взятых в соотношении 60:40, по показателю когезионной прочности и прочности связи с латунированным металлокордом при 23°С и после старения в течение 12 часов при 120°С, а по показателям физико-механических свойств, сопротивления раздиру, теплообразованию и усталостной выносливости при многократном растяжении превосходят резины брекера, изготовленные из полиизопрена по прототипу.

Также из образцов выделенного по Примерам 1-4 синтетического полиизопрена на вальцах при 75±5°С изготавливают, руководствуясь стандартом ASTM D 3403, резиновые смеси, содержащие в мас. ч. на 100 мас. ч.: полиизопрена серу - 2,25, оксид цинка - 5,0, стеариновую кислоту - 2,0, ускоритель типа TBBS (Сульфенамид Т и его аналоги) - 0,7, технический углерод N 330-35. В полученных смесях определяют время достижения оптимума при 135°С, которое составляет 30 минут, вулканизуют полученные смеси в виде 2 мм пластин при указанной температуре и времени. Испытания пластин из образцов полиизопрена выделенного, по Примерам 1-4, с определением их физико-механических характеристик проводят согласно стандарту ASTM D 3403. Результаты испытаний представлены в табл. 5.

Как видно из данных табл. 5, углероднаполненные вулканизаты полиизопрена, выделенного способом по предлагаемому изобретению, превосходят вулканизат на основе полиизопрена, выделенного способом по прототипу, по условному напряжению при 300% удлинении на 2,8-4,8 МПа, а по условной прочности при растяжении на 2,1-5,3 МПа.

Таким образом, использование в предлагаемом способе выделения синтетического цис 1,4-полиизпрена готового антиагломератора позволяет сократить расход сырьевых и энергоресурсов, уменьшить производственные площади, снизить загрязнение сточных вод.

Выделяемый способом по предлагаемому изобретению синтетический полиизопрен по сравнению с полиизопреном, выделяемым способом по прототипу, позволяет получить:

- повышенные на 67-97% показатели когезионной прочности невулканизованных углероднаполненных резиновых смесей, что снижает технологические трудности при сборке шин из резинокордных профилированных заготовок

- повышенные показатели физико-механических свойств, включая сопротивление раздиру, показатели усталостной выносливости при многократном растяжении, уменьшенное теплообразования при многократном сжатии резин, а также повышенные показатели прочности связи с латунированным металлокордом до и после теплового старения резиновых смесей для обрезинки латунированного металлокорда брекера шин

- повышенные показатели физико-механических свойств технических углероднаполненных резин для других применений.

Таблица 1 Параметры процесса выделения синтетического полиизопрена с различными типами и дозировкой антиагломераторов Показатели Примеры 1
Прототип
2 3 4
Расход полимеризата, т/ч 41 41,2 41,5 42 Расход антиагломератора, кг/тонну каучука 8,8 6 12 20 Содержание ионов хлора в сточной воде, % 0,240 0,130 0,109 0,090 Содержание ионов кальция в сточной воде, % 0,050 0,029 0,024 0,022 pH водных стоков, ед 11,5 10,8 10,3 9,5 Вязкость Муни, ед 70,5 70 70,5 72 Индекс сохранения пластичности, % 91 92 91 90

Таблица 2 Физико-механические свойства ненаполненных вулканизатов на основе выделенного полиизопрена Показатели Пример 1
Прототип
2 3 4
Условная прочность при растяжении, (25±3)°C, МПа 30,9 31,2 31,6 31,4 Относительное удлинение, (25±3)°C. % 850 880 860 870 Условная прочность при растяжении, 100°C, МПа 21,7 21,8 22,0 21,9

Таблица 3 Когезионные свойства углероднаполненных резиновых смесей на основе выделенного полиизопрена Показатели Пример 1
Прототип
2 3 4
Условное напряжение при 300% удлинении, (25±3)°C, МПа 0,26 0,30 0,31 0,29 Относительное удлинение, (25±3)°C, % 880 868 890 850 Условная прочность при растяжении, (25±3)°C, МПа 0,33 0,58 0,65 0,61

Таблица 4 Свойства резиновых смесей и резин брекера легковых радиальных шин Наименование показателей СКИ-3
По прототипу
60 м.ч. НК П-2
40 м.ч. СКИ-3 по прототипу
100 м.ч. СКИ-3 по изобретению, пример 3
Когезионная прочность, (25±3)°C, МПа 0,25 0,27 0,29 Условное напряжение при удлинении 300%, МПа - при нормальных условиях (25±3)°C 13,5 14,3 14,1 Условная прочность при растяжении, МПа - при нормальных условиях (25±3)°C 21,5 21,7 22,8 - после старения 120°C×24 ч/коэфф. старения, Кσ 9,0/0,42 6,8/0,31 7,9/0,35 Относительное удлинение при разрыве, % - при нормальных условиях (25±3)°C 460 430 450 - после старения 120°×24 ч/коэфф. старения, КL 160/0,35 190/0,44 190/0,42 Сопротивление раздиру, кН/м - при нормальных условиях (25±3)°C 95 97 98 - при 100°C 54 56 57 Теплообразование по Гудричу Δt, °C 30 29 26 Остаточная деформация ε, % 2,6 2,4 2,3 Усталостная выносливость при многократном растяжении, тыс. циклов - при нормальных условиях (25±3)°C ε=150% 30500 23800 32460 Прочность связи резины по Н-методу с металлокордом 3Л30 - при нормальных условиях (вулканизация 155°С×20 мин) 291 293 305 - после старения 100°C×2 ч 263/0,90 271/0,92 288/0,94

Таблица 5 Физико-механические свойства углероднаполненных резин на основе выделенного полиизопрена с техуглеродом N330 Показатели Пример 1
Прототип
2 3 4
Условное напряжение при 300% удлинении, (25±3)°C, МПа 6,1 9,5 10,9 8,9 Условная прочность при растяжении, (25±3)°C, МПа 23,3 25,4 28,6 27,4 Относительное удлинение, (25±3)°C, % 688 650 600 630

Похожие патенты RU2603643C1

название год авторы номер документа
СПОСОБ ВЫДЕЛЕНИЯ ПОЛИИЗОПРЕНОВОГО КАУЧУКА 2003
  • Милославский Г.Ю.
  • Галявиев Ш.Ш.
  • Зайдуллин А.А.
  • Сахабутдинов А.Г.
  • Нуриев М.С.
RU2235732C1
СПОСОБ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ 2003
  • Щербань Г.Т.
  • Тульчинский Э.А.
  • Милославский Г.Ю.
  • Зайдуллин А.А.
RU2255091C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКОГО КАУЧУКА 1996
  • Хайруллов Д.Н.
  • Болдырев А.П.
  • Курочкин Л.М.
  • Зайдуллин А.А.
  • Авдеев В.Н.
  • Новиков А.А.
RU2106683C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО ЦИС-1,4-ПОЛИИЗОПРЕНА 2015
  • Васильев Валентин Александрович
  • Хвостик Григорий Максимович
  • Андрианова Людмила Германовна
  • Венцеславская Клара Константиновна
  • Бубнова Светлана Васильевна
  • Дроздов Борис Трофимович
  • Бодрова Вера Сергеевна
RU2595138C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ПОЛИИЗОПРЕНА 1992
  • Гуляева Н.А.
  • Моисеев В.В.
  • Косовцев В.В.
  • Прохоров Н.И.
  • Бочаров В.Д.
  • Маркова З.Н.
  • Поспелова Л.М.
  • Евдокимова З.Х.
  • Головачев А.М.
  • Сире Е.М.
  • Полуэктов И.Т.
RU2067983C1
Способ выделения эластомеров растворной полимеризации 2023
  • Фирсова Алена Валерьевна
  • Антман Евгений Игоревич
  • Хлабыстов Евгений Дмитриевич
  • Папков Валерий Николаевич
  • Комаров Евгений Валерьевич
RU2819288C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ 2003
  • Щербань Г.Т.
  • Иванов И.В.
  • Федотов Ю.И.
  • Барышников М.Б.
  • Крюков А.В.
  • Жданов И.Л.
  • Дударь А.В.
  • Квашко В.А.
  • Супрыткин И.А.
RU2261870C2
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО ЦИС-1,4-ПОЛИИЗОПРЕНА 2007
  • Васильев Валентин Александрович
  • Хвостик Григорий Максимович
  • Смирнов Владислав Петрович
  • Баженов Юрий Петрович
  • Насыров Ильдус Шайхитдинович
  • Морозов Юрий Витальевич
  • Ильин Владимир Михайлович
  • Бурганов Табриз Гильмутдинович
  • Милославский Юрий Николаевич
  • Гильманов Хамит Хамисович
  • Гильмутдинов Наиль Рахматуллович
  • Сахабутдинов Анас Аптынурович
RU2352588C2
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО ЦИС-1,4-ПОЛИИЗОПРЕНА 2005
  • Васильев Валентин Александрович
  • Сендерская Евгения Евгеньевна
  • Хвостик Григорий Максимович
  • Баженов Юрий Петрович
  • Ильин Владимир Михайлович
  • Насыров Ильдус Шайхитдинович
RU2281295C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОЙ ПОЛИИЗОПРЕНОВОЙ КОМПОЗИЦИИ И РЕЗИНОВАЯ СМЕСЬ С ЕЕ ИСПОЛЬЗОВАНИЕМ 2002
  • Бабурин Б.Г.
  • Васильев В.А.
  • Герасимова И.Л.
  • Дроздов В.А.
  • Сендерская Е.Е.
  • Семёнов П.Г.
  • Хвостик Г.М.
  • Баженов Ю.П.
  • Абдуллин А.Н.
  • Насыров И.Ш.
  • Бокин А.И.
  • Искаков Б.А.
RU2215751C1

Реферат патента 2016 года СПОСОБ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКОГО ЦИС-1,4-ПОЛИИЗОПРЕНА И ПОЛИИЗОПРЕН, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ

Настоящее изобретение относится к способу выделения синтетического цис-1,4-полиизопрена, используемого для производства шин и резинотехнических изделий, из раствора в углеводородном растворителе водной дегазацией. Водную дегазацию проводят в крошкообразователе и дегазаторе путем смешения полимеризата, горячей циркуляционной воды и пара в присутствии антиагломератора. Антиагломератор в количестве от 6,0 до 20,0 кг на тонну сухого выделяемого каучука вводят на всасывающий патрубок центробежного насоса, подающего в крошкообразователь горячую циркуляционную воду. Указанный антиагломератор представляет собой 5-20% раствор в минеральном масле смешанной кальциевой соли стеариновой и полиалкилбензолсульфоновой кислоты с алкильным радикалом с числом углеродных атомов в интервале С1226 при массовом соотношении кислот в процессе синтеза антиагломератора в интервале от 1:1 до 1:3. Данный способ позволяет снизить энергозатраты при выделении синтетического цис 1,4-полиизопрена, упростить технологическую схему его производства, улучшить качество сточных вод по содержанию солей, повысить когезионную прочность невулканизованных углероднаполненных резиновых смесей, физико-механические показатели, сопротивление раздиру, усталостную выносливость и прочность связи с латунированным металлокордом технических резин. 2 н.п. ф-лы, 5 табл., 4 пр.

Формула изобретения RU 2 603 643 C1

1. Способ выделения синтетического цис-1,4-полиизопрена из раствора в углеводородном растворителе водной дегазацией в крошкообразователе и дегазаторе путем смешения полимеризата, горячей циркуляционной воды и пара в присутствии антиагломератора с выводом образующихся паров дегазации на конденсацию и выделением каучука из образовавшейся водной дисперсии с последующей его сушкой, отличающийся тем, что на всасывающий патрубок центробежного насоса, подающего горячую циркуляционную воду в крошкообразователь, дозированием на тонну сухого выделяемого каучука в количестве от 6,0 до 20,0 кг вводят антиагломератор, представляющий собой 5-20% раствор в минеральном масле смешанной кальциевой соли стеариновой и полиалкилбензолсульфоновой кислоты с алкильным радикалом с числом углеродных атомов в интервале С1226 при массовом соотношении кислот в процессе синтеза антиагломератора в интервале от 1:1 до 1:3

2. Синтетический полиизопрен, выделенный по способу п. 1, с когезионной прочностью углероднаполненных резиновых смесей на его основе, увеличенной на 67-97%, и с увеличенным на 2,8-4,8 МПа условным напряжением при 300% удлинении и на 2,1-5,3 МПа условной прочности углероднаполненных вулканизатов.

Документы, цитированные в отчете о поиске Патент 2016 года RU2603643C1

СПОСОБ ВЫДЕЛЕНИЯ ПОЛИИЗОПРЕНОВОГО КАУЧУКА 2003
  • Милославский Г.Ю.
  • Галявиев Ш.Ш.
  • Зайдуллин А.А.
  • Сахабутдинов А.Г.
  • Нуриев М.С.
RU2235732C1
АНТИАГЛОМЕРАТОР ДЛЯ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ 2012
  • Дементьев Александр Владимирович
  • Кавун Семен Моисеевич
  • Колокольников Аркадий Сергеевич
  • Меджибовский Александр Самойлович
RU2492188C1
СПОСОБ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ 2010
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Борейко Наталья Павловна
  • Савельчев Алексей Петрович
  • Ильязов Марат Фаритович
  • Ахметов Ильдар Гумерович
  • Ахметова Диляра Равилевна
  • Амирханов Ахтям Талипович
  • Мисбахов Ильяс Рафикович
  • Горбунов Сергей Петрович
RU2448121C1
СПОСОБ ВЫДЕЛЕНИЯ ЭЛАСТОМЕРОВ 0
  • Ф. Б. Гершанов, А. Г. Лиакумович, В. Р. Долидзе, А. Б. Козорез, И. М. Белгородский, В. М. Закревский, В. И. Анисимов, Ф. И. Гун Я. К. Серебровский
  • Стерлитамакский Опытно Промышленный Завод Ски
SU275367A1
JP 10330404 A, 15.12.1998.

RU 2 603 643 C1

Авторы

Жаворонков Дмитрий Александрович

Насыров Ильдус Шайхитдинович

Сидоров Андрей Витальевич

Фаизова Виктория Юрьевна

Кавун Семен Моисеевич

Колокольников Аркадий Сергеевич

Меджибовский Александр Самойлович

Сударенко Евгений Николаевич

Даты

2016-11-27Публикация

2015-11-06Подача