КАТАЛИЗАТОР ГИДРОИЗОДЕПАРАФИНИЗАЦИИ СРЕДНЕДИСТИЛЛЯТНЫХ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ Российский патент 2017 года по МПК B01J29/48 B01J29/26 B01J29/18 B01J29/40 B01J23/883 C10G45/08 C10G45/12 

Описание патента на изобретение RU2612134C1

Изобретение относится к области нефтепереработки, в частности к разработке катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, а именно, смесевого сырья нефтяного и растительного происхождения, с получением базовых компонентов дизельных топлив для арктических условий и авиационных керосинов.

Основной тенденцией в области разработки катализаторов изодепарафинизации является увеличение изомеризующей и снижение крекирующей активности с целью увеличения выхода и качества целевого продукта.

Равновесие между этими двумя функциями является одним из параметров, который определяет активность и селективность катализатора.

Известен катализатор для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот, обладающий изомеризующей способностью.

В состав катализатора входят следующие компоненты, % масс.:

Титан, олово, цирконий 4,5-15 Молибден, вольфрам 12,4-14,2 Кобальт, никель 2,5-3,8 Носитель - аморфный оксид алюминия До 100

(Пат. РФ №2534993, 2014).

Недостатком катализатора является то, что при применении его в процессе изомеризации дизельных дистиллятов используется сырье только биологического происхождения, а также не приводятся в патенте значения показателей низкотемпературных свойств полученного топлива. Можно предположить, что при использовании сырья только биологического происхождения получить с помощью указанного катализатора базовые компоненты дизельных топлив для арктических условий и авиационных керосинов вряд ли возможно.

Известен катализатор гидроизомеризации дизельных дистиллятов, который включает гидрирующий металлический компонент на носителе, содержащем цеолит и оксид алюминия. При этом в качестве гидрирующего металлического компонента данный катализатор содержит переходные металлы Ni, Mo, W или их смеси и благородные металлы Pd и Ir, а в качестве цеолита - смесь среднепористого цеолита ЦВН структуры пентасил и широкопористого ультрастабильного цеолита USY. Кроме того, он дополнительно содержит промотор оксид бора или оксид фосфора. Предлагаемый катализатор имеет следующее соотношение компонентов, % масс.:

Неблагородные металлы 7-12 Благородные металлы 0,1-1,0 Смесь цеолитов 60-70 Промотор 0,5-4,0 Оксид алюминия До 100

(Пат. РФ №2535213, 2014).

Основным недостатком катализатора является наличие в его составе благородных металлов, что значительно удорожает катализатор, а также использование в качестве сырья только прямогонных дизельных дистиллятов нефтяного происхождения, предварительно прошедших гидроочистку. При этом предельная температура фильтруемости, полученная в результате процесса гидроизомеризации дизельной фракции, составляет от минус 12 до минус 44°С.

Наиболее близким к заявляемому способу является катализатор изодепарафинизации, описанный в патенте РФ №2549617, 2015.

Катализатор изодепарафинизации нефтяного сырья включает смесь высококремнеземных цеолитов, гидрирующие переходные металлы: никель, вольфрам и/или молибден и связующее. Катализатор в качестве смеси высококремнеземных цеолитов содержит тройную смесь из цеолитов: широкопористого фожазита - ультрастабильного USY, среднепористого ZSM-12 или ZSM-22, а также пентасила ЦВН или ZSM-11, в качестве связующего содержит оксид алюминия и дополнительно содержит промотор оксид бора или оксид фосфора, или их смесь при следующем соотношении компонентов, % масс.:

Смесь цеолитов (кислотный компонент) 60,0-80,0 Гидрирующие переходные металлы 6,0-20,0 Промотор 0,5-4,0 Оксид алюминия До 100,0

Недостатком описанного катализатора является использование в качестве сырья при его применении только глубоко очищенных прямогонных дизельных дистиллятов нефтяного происхождения. При этом предельная температура фильтруемости полученной в результате процесса гидроизомеризации дизельной фракции составляет от минус 35 до минус 44°С.

Следует отметить, что в патенте РФ №2549617, 2015, так и в патенте РФ №2535213, 2014, отсутствуют данные об использовании указанного катализатора для гидроизодепарафинизации смесевого сырья, в состав которого входит углеводородный компонент синтеза Фишера-Тропша (синтетическая нефть), полученный газификацией биомассы, что способствовало бы расширению сырьевой базы для производства моторных топлив.

Следует также отметить, что использование синтетической нефти непосредственно в качестве топлива невозможно, поскольку присутствует высокое содержание нормальных парафинов, олефинов и кислородсодержащих соединений, что неблагоприятно сказывается на низкотемпературных свойствах и устойчивости топлив к окислению. Исходя из этого, синтетические нефти, полученные по методу Фишера-Тропша, обычно используются как исходные материалы базового топлива после предварительной гидроочистки.

Задачей изобретения является разработка состава катализатора, обладающего высокой активностью и селективностью в процессе гидроизодепарафинизации среднедистиллятного смесевого сырья растительного и нефтяного происхождения для получения базовых компонентов дизельного топлива для арктических условий и авиационного бензина.

Поставленная задача решается разработкой катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, включающего смесь высококремнеземных цеолитов, гидрирующие переходные металлы, промотор и связующее. Катализатор отличается тем, что в качестве смеси высококремнеземных цеолитов содержит бикомпонентную смесь цеолитов: среднепористый цеолит ЦВН структуры пентасил и широкопористый цеолит морденит или цеолит β при массовом соотношении ЦВН : (морденит или цеолит β), соответственно (1-6):1, в качестве гидрирующих переходных металлов содержит оксиды никеля и молибдена, в качестве промотора - смесь оксидов бора и лантана, в качестве связующего - смесь аморфного алюмосиликата и γ-оксида алюминия при следующем соотношении компонентов, % масс.:

Смесь высококремнеземных цеолитов 40,0-55,0 Гидрирующие переходные металлы 7,5-15 Промотор 2,0-4,0 Аморфный алюмосиликат 10,0-15,0 γ-Оксид алюминия До 100

Среднепористый цеолит ЦВН в водородной форме структуры пентасил включает цеолиты, выбранные из группы ЦВМ, ZSM-5, ZSM-11 с силикатным модулем выше 55.

В качестве широкопористого цеолита содержит морденит в водородной форме с силикатным модулем 20-30 или цеолит β в водородной форме с силикатным модулем выше 150.

Разработанный катализатор предназначен для гидроизодепарафинизации среднедистиллятных углеводородных фракций, в качестве которых используют гидроочищенное смесевое топливо, состоящее из 30% об. синтетической нефти, полученной по методу Фишера-Тропша и 70% об. прямогонной дизельной фракции.

Качество гидроочищенного смесевого топлива для испытания катализаторов представлено в таблице 1.

В таблице 2 представлен состав приготовленных образцов катализаторов.

Образцы катализаторов готовили методом влажного смешения компонентов с последующим упариванием массы, формованием ее экструзией, провяливанием, сушкой и прокаливанием.

В месильную машину загружали расчетные количества смеси порошков цеолитов, аморфного алюмосиликата, влажной лепешки гидроксида алюминия с фильтр-пресса и кислотного компонента в виде борной кислоты, добавляли азотную кислоту в количестве, обеспечивающем заданное значение pH для пептизации массы, смесь тщательно перемешивали. В случае недостаточной влажности катализаторной массы при перемешивании добавляли дистиллированную воду до требуемого влагосодержания.

Затем в массу добавляли соль азотнокислого лантана, тщательно перемешивали массу до однородного состояния. При постоянном перемешивании добавляли в катализаторную массу рассчитанные количества гидрирующих компонентов в пересчете на оксиды металлов. Вначале добавляли соль азотнокислого никеля, тщательно перемешивали. Затем соединение второго гидрирующего компонента оксида молибдена в виде соли аммония молибденовокислого и перемешивали массу до однородного состояния. На заключительном этапе в массу добавляли порообразующий компонент крахмал.

Массу упаривали в сушильном шкафу до влажности 42-45% масс. Готовую массу формовали на грануляторе с диаметром отверстий 2,0 мм.

Затем гранулы провяливали на воздухе при комнатной температуре в течение 18-24 часов и сушили в сушильном шкафу при температуре 120°С 6 часов.

Просушенные гранулы прокаливали в муфельной электропечи при температуре 530-535°С в течение 6 часов. Скорость подъема температуры в электропечи составляла 50°С в час.

Активность катализаторов проверялась на микропилотной установке проточного типа с загрузкой катализатора 20 см3 (фракция 0,5-1,0 мм).

Сушку катализаторов в реакторе перед гидроизодепарафинизацией проводили в токе водорода, подаваемого на проток, при атмосферном давлении и соотношении водород/катализатор не менее 500 об./об. Температура повышалась ступенчато до 100, 150 и 250°С (скорость нагрева 25°С в час) с выдержкой при каждой температуре до полного прекращения выделения воды. На последнем этапе при температуре 250°С катализатор выдерживали не менее 1 часа.

После сушки катализаторы активировали в среде водорода при повышенном давлении 3 МПа, при температуре 500°С (скорость нагрева 25°С в час) и соотношении водород/катализатор не менее 500 об./об. в течение 4 часов.

Технологические параметры испытания на активность катализаторов в процессе гидроизодепарафинизации имели следующие значения: давление 3 МПа, объемная скорость подачи сырья 1,5-3 ч-1, отношение водород/сырье 600 об./об. Температура процесса подбиралась таким образом, чтобы в полученном гидрогенизате обеспечивалась температура застывания не выше минус 55°С.

Результаты испытания на активность разработанного катализатора гидроизодепарафинизации смесевого сырья (30% об. синтетической нефти +70% об. прямогонного дизельного топлива) представлены в таблице 3.

Из результатов испытания разработанного. катализатора процесса гидроизодепарафинизации смесевого топлива (табл. 3) следует, что полученные из гидрогенизата фракции авиационного керосина (135-230°С) соответствуют требованиям ГОСТ 10227-86 «Топлива для реактивных двигателей» по температуре начала кристаллизации, а также полученные фракции дизельного топлива (230°С-К.К.) соответствуют требованиям ГОСТ Р55475-2013 «Топливо дизельное зимнее и арктическое депарафинированное. Технические условия» по температуре помутнения и предельной температуре фильтруемости.

Таким образом, разработан катализатор, обладающий высокой активностью и селективностью в процессе гидроизодепарафинизации среднедистиллятных углеводородных фракций, который благодаря заявленному составу и соотношению компонентов при сочетании гидрирующих металлов (без благородных металлов), бикомпонентной смеси высококремнеземных цеолитов, а также смеси промоторов (оксидов бора и лантана), позволили получить базовые компоненты дизельного топлива для арктических условий и авиационного керосина, используя смесевое сырье растительного и нефтяного происхождения.

Похожие патенты RU2612134C1

название год авторы номер документа
Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием 2017
  • Красильникова Людмила Александровна
  • Гуляева Людмила Алексеевна
  • Хавкин Всеволод Артурович
  • Никульшин Павел Анатольевич
  • Андреева Анна Вячеславовна
  • Кондрашев Дмитрий Олегович
  • Клейменов Андрей Владимирович
  • Храпов Дмитрий Валерьевич
  • Кубарев Александр Павлович
RU2662934C1
КАТАЛИЗАТОР И СПОСОБ ИЗОДЕПАРАФИНИЗАЦИИ ДИЗЕЛЬНЫХ ДИСТИЛЛЯТОВ С ЕГО ИСПОЛЬЗОВАНИЕМ 2022
  • Павлов Михаил Леонардович
  • Басимова Рашида Алмагиевна
  • Алябьев Андрей Степанович
  • Зиннуров Рустем Раисович
  • Хабибуллин Азамат Мансурович
RU2789593C1
КАТАЛИЗАТОР И СПОСОБ ИЗОДЕПАРАФИНИЗАЦИИ ДИЗЕЛЬНЫХ ДИСТИЛЛЯТОВ С ЕГО ИСПОЛЬЗОВАНИЕМ 2014
  • Белявский Олег Германович
  • Глазов Александр Витальевич
  • Панов Александр Васильевич
  • Храпов Дмиитрий Валерьевич
  • Короткова Наталья Владимировна
  • Винокуров Борис Владимирович
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Красильникова Людмила Александровна
RU2549617C1
КАТАЛИЗАТОР И СПОСОБ ГИДРОИЗОМЕРИЗАЦИИ ДИЗЕЛЬНЫХ ДИСТИЛЛЯТОВ С ЕГО ИСПОЛЬЗОВАНИЕМ 2013
  • Сергиенко Сергей Андреевич
  • Красильникова Людмила Александровна
  • Мисько Ольга Михайловна
  • Груданова Алёна Игоревна
  • Гуляева Людмила Алексеевна
  • Хавкин Всеволод Артурович
  • Шмелькова Ольга Ивановна
  • Виноградова Наталья Яковлевна
  • Бычкова Дина Моисеевна
RU2535213C1
Катализатор изодепарафинизации дизельных фракций 2021
  • Богомолова Татьяна Сергеевна
  • Смирнова Марина Юрьевна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2773377C1
СПОСОБ ПОЛУЧЕНИЯ ВСЕСЕЗОННОГО УНИФИЦИРОВАННОГО ДИЗЕЛЬНОГО ТОПЛИВА 2018
  • Шарин Евгений Алексеевич
  • Лунева Вера Всеволодовна
  • Середа Василий Александрович
RU2673558C1
Катализатор гидроизодепарафинизации дизельных фракций для получения низкозастывающего дизельного топлива и способ получения низкозастывающего дизельного топлива с его использованием 2023
  • Пимерзин Алексей Андреевич
  • Глотов Александр Павлович
  • Гусева Алёна Игоревна
  • Андреева Анна Вячеславовна
  • Засыпалов Глеб Олегович
  • Климовский Владимир Алексеевич
  • Абрамов Егор Сергеевич
RU2826904C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2016
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Красильникова Людмила Александровна
  • Груданова Алёна Игоревна
  • Шмелькова Ольга Ивановна
  • Болдушевский Роман Эдуардович
RU2623088C1
СПОСОБ ПОЛУЧЕНИЯ НИЗКОЗАСТЫВАЮЩЕГО ДИЗЕЛЬНОГО ТОПЛИВА 2021
  • Богомолова Татьяна Сергеевна
  • Смирнова Марина Юрьевна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2773434C1
Способ приготовления катализатора изодепарафинизации дизельных фракций 2021
  • Богомолова Татьяна Сергеевна
  • Смирнова Марина Юрьевна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2773356C1

Реферат патента 2017 года КАТАЛИЗАТОР ГИДРОИЗОДЕПАРАФИНИЗАЦИИ СРЕДНЕДИСТИЛЛЯТНЫХ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ

Изобретение относится к области нефтепереработки, в частности к разработке катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, а именно, смесевого сырья нефтяного и растительного происхождения, с получением базовых компонентов авиационных керосинов и дизельных топлив для арктических условий. Катализатор включает смесь высококремнеземных цеолитов, гидрирующие переходные металлы, промотор и связующее, при этом в качестве смеси высококремнеземных цеолитов содержит бикомпонентную смесь цеолитов: среднепористый цеолит ЦВН структуры пентасил и широкопористый цеолит морденит или цеолит β при массовом соотношении ЦВН : (морденит или цеолит β), соответственно (1-6):1, в качестве гидрирующих переходных металлов содержит оксиды никеля и молибдена, в качестве промотора - смесь оксидов бора и лантана, в качестве связующего - смесь аморфного алюмосиликата и γ-оксида алюминия при следующем соотношении компонентов, % масс.: смесь высококремнеземных цеолитов - 40,0-55,0, гидрирующие переходные металлы - 7,5-15, промотор - 2,0-4,0, аморфный алюмосиликат - 10,0-15,0, γ-оксид алюминия - до 100. Разработанный катализатор обладает высокой активностью и селективностью и предназначен для гидроизодепарафинизации среднедистиллятных углеводородных фракций, в качестве которых используют гидроочищенное смесевое топливо, состоящее из синтетической нефти, полученной по методу Фишера-Тропша, и прямогонной дизельной фракции. 3 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 612 134 C1

1. Катализатор гидроизодепарафинизации среднедистиллятных углеводородных фракций, включающий смесь высококремнеземных цеолитов, гидрирующие переходные металлы, промотор и связующее, отличающийся тем, что в качестве смеси высококремнеземных цеолитов содержит бикомпонентную смесь цеолитов: среднепористый цеолит ЦВН структуры пентасил и широкопористый цеолит морденит или цеолит β при массовом соотношении ЦВН : (морденит или цеолит β), соответственно (1-6):1, в качестве гидрирующих переходных металлов содержит оксиды никеля и молибдена, в качестве промотора содержит смесь оксидов бора и лантана, в качестве связующего содержит смесь аморфного алюмосиликата и γ-оксида алюминия при следующем соотношении компонентов, % масс.:

Смесь высококремнеземных цеолитов 40,0-55,0 Гидрирующие переходные металлы 7,5-15 Промотор 2,0-4,0 Аморфный алюмосиликат 10,0-15,0 γ-Оксид алюминия до 100

2. Катализатор по п. 1, отличающийся тем, что содержит среднепористый цеолит ЦВН в водородной форме структуры пентасил с силикатным модулем выше 55, выбранный из группы ЦВМ, ZSM-5, ZSM-11.

3. Катализатор по п. 1, отличающийся тем, что в качестве широкопористого цеолита содержит морденит в водородной форме с силикатным модулем 20-30 или цеолит β в водородной форме с силикатным модулем выше 150.

4. Катализатор по п. 1, отличающийся тем, что предназначен для гидроизодепарафинизации среднедистиллятных углеводородных фракций, в качестве которых используют гидроочищенное смесевое топливо, состоящее из синтетической нефти, полученной по методу Фишера-Тропша и прямогонной дизельной фракции.

Документы, цитированные в отчете о поиске Патент 2017 года RU2612134C1

КАТАЛИЗАТОР И СПОСОБ ИЗОДЕПАРАФИНИЗАЦИИ ДИЗЕЛЬНЫХ ДИСТИЛЛЯТОВ С ЕГО ИСПОЛЬЗОВАНИЕМ 2014
  • Белявский Олег Германович
  • Глазов Александр Витальевич
  • Панов Александр Васильевич
  • Храпов Дмиитрий Валерьевич
  • Короткова Наталья Владимировна
  • Винокуров Борис Владимирович
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Красильникова Людмила Александровна
RU2549617C1
КАТАЛИЗАТОР И СПОСОБ ГИДРОИЗОМЕРИЗАЦИИ ДИЗЕЛЬНЫХ ДИСТИЛЛЯТОВ С ЕГО ИСПОЛЬЗОВАНИЕМ 2013
  • Сергиенко Сергей Андреевич
  • Красильникова Людмила Александровна
  • Мисько Ольга Михайловна
  • Груданова Алёна Игоревна
  • Гуляева Людмила Алексеевна
  • Хавкин Всеволод Артурович
  • Шмелькова Ольга Ивановна
  • Виноградова Наталья Яковлевна
  • Бычкова Дина Моисеевна
RU2535213C1
КАТАЛИЗАТОР ГИДРОДЕПАРАФИНИЗАЦИИ НЕФТЯНЫХ ИЛИ ГАЗОКОНДЕНСАТНЫХ ФРАКЦИЙ И СПОСОБ ГИДРОДЕПАРАФИНИЗАЦИИ С ЕГО ИСПОЛЬЗОВАНИЕМ 2000
  • Канакова О.А.
  • Колова Н.Е.
  • Красильникова Г.М.
  • Ростанин Н.Н.
  • Смолькина Т.Р.
  • Фадеева И.В.
  • Фалькевич Г.С.
RU2169042C1
WO 2010015736 A1, 11.02.2010
US 20050115872 A1, 02.06.2005.

RU 2 612 134 C1

Авторы

Гуляева Людмила Алексеевна

Красильникова Людмила Александровна

Хавкин Всеволод Артурович

Груданова Алёна Игоревна

Бычкова Дина Моисеевна

Болдушевский Роман Эдуардович

Шмелькова Ольга Ивановна

Даты

2017-03-02Публикация

2015-12-25Подача