Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН).
В настоящее время производят варисторы на основе оксида цинка ZnO с добавками оксидов легирующих элементов, стоимость которых превышает стоимость оксида цинка. Основными свойствами варисторной керамики являются напряжение пробоя (Ub), коэффициент нелинейности (α) и плотность тока утечки (Iут). Для работы ОПН в высоковольтных электрических сетях необходима варисторная керамика с напряжением пробоя более 3 кВ/мм, коэффициентом нелинейности α не менее 40 и плотностью тока утечки Iут не более 10 мкА/см2. Однако при этом возникает проблема выбора оптимального состава компонентов с точки зрения обеспечения требуемых характеристик керамики при одновременном снижении ее стоимости.
Известна оксидно-цинковая варисторная керамика (см. пат. 8217751 США, МПК H01C 7/10 (2006.1), 2012) состава, мас.%: ZnO 94,69, Bi2O3 3,0, Sb2O3 1,5, Al2O3 0,01, Co3O4 0,5, NiO 0,2, Mn2O3 или Li2CO3 0,1, которую получают путем прокалки смеси исходных нанодисперсных оксидов при 550°C, таблетирования образующегося порошка и спекания таблеток горячим прессованием при 800-850°C. Полученная керамика имеет напряжение пробоя Ub=1,71-1,85 кВ/мм, коэффициент нелинейности α=75-77, плотность тока утечки Iут<10 мкА/см2.
Данная варисторная керамика имеет относительно невысокое содержание оксидов легирующих элементов при обеспечении высоких значений коэффициента нелинейности и невысокой величины плотности тока утечки. Однако напряжение пробоя керамики является относительно низким (1,85 кВ/мм). Кроме того, исходные оксиды берут в виде нанодисперсных порошков, а спекание керамических таблеток осуществляют путем горячего прессования, что существенно затрудняет и удорожает производство керамики.
Известна также принятая в качестве прототипа оксидно-цинковая варисторная керамика (см. пат. 2568444 РФ, МПК C04B 35/453, H01C 7/112 (2006.01), 2015), имеющая состав, мас.%: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92, при этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32. Для получения керамики в качестве исходных компонентов используют порошкообразные гидратированные нитраты цинка, висмута, алюминия, кобальта и виннокислый раствор сурьмы. Исходные компоненты смешивают в стехиометрическом количестве с коммерческим сахаром, нагревают смесь при 145°C и затем прокаливают при 700°C. Из полученного керамического порошка со средним размером частиц 30 нм прессуют таблетки, которые подвергают двухступенчатому спеканию при температуре 700°C и 935°C. Полученная высоковольтная варисторная керамика имеет напряжение пробоя Ub=3,5-4,4 кВ/мм, коэффициент нелинейности α=40-55.
Известная варисторная керамика имеет довольно высокие значения напряжения пробоя и коэффициента нелинейности, но, как показывают экспериментальные данные, плотность тока утечки керамики относительно высока. Содержание легирующих оксидов (до 40 мас.%) является высоким, что удорожает керамику.
Настоящее изобретение направлено на достижение технического результата, заключающегося в удешевлении получаемой высоковольтной варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности и пониженной плотности тока утечки.
Технический результат достигается тем, что оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия и кобальта, согласно изобретению, содержит оксидные компоненты в следующем количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3, при этом оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72.
Существенные признаки заявляемого изобретения, определяющие объем правовой защиты и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.
Оксид цинка является основным компонентом заявляемой керамики. Содержание его в количестве 85-95 мас.% обеспечивает получение керамики с высокими величинами напряжения пробоя и коэффициента нелинейности и низким значением плотности тока утечки. При содержании ZnO более 95 мас.% увеличивается плотность тока утечки, а при содержании ZnO менее 85 мас.% при сохранении высоких варисторных свойств возрастает стоимость керамики.
Количественное содержание добавок в виде оксидов висмута, сурьмы, алюминия и кобальта зависит от содержания оксида цинка и должно отвечать соотношению, мас.%: Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. При этом необходимо, чтобы оксиды висмута, сурьмы, алюминия и кобальта соотносились как 1,0:0,7:1,2:0,72. Это обеспечивает стабильно высокие величины напряжения пробоя и коэффициента нелинейности и низкое значение плотности тока утечки при пониженной стоимости керамики.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающего в удешевлении получаемой высоковольтной варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности и пониженной плотности тока утечки.
Особенности и преимущества заявляемого изобретения могут быть пояснены нижеследующими Примерами.
Керамику согласно изобретению получают следующим образом. Вначале осуществляют синтез нанодисперсного керамического порошка методом сжигания с использованием в качестве топлива коммерческого сахара. В качестве исходных компонентов берут порошкообразные гидратированные нитраты металлов: Zn(NO3)2⋅6H2O, Bi(NO3)3⋅5H2O, Al(NO3)3⋅9H2O, Co(NO3)2⋅6H2O и виннокислый раствор сурьмы. Исходные компоненты засыпают в заданном соотношении во фторопластовую емкость, помещают в предварительно нагретый до 200°C сушильный шкаф, выдерживают в течение 50 минут и охлаждают на воздухе. Продукт сжигания измельчают с помощью стержневого миксера и прокаливают в муфельной печи при температуре 700°C в течение 1 часа. Синтезированный керамический порошок со средним размером частиц 26 нм таблетируют. Таблетки спекают при 975°C с изотермической выдержкой в течение 2 часов. Полученная варисторная керамика имеет состав, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. При этом оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72.
Для определения варисторных свойств керамики на торцевые поверхности керамических таблеток наносят пленочные электроды с использованием серебряной пасты.
Состав и свойства варисторной керамики, полученной согласно Примерам 1-4 осуществления изобретения и согласно Примерам 5 и 6 по прототипу, представлены в Таблице.
Из представленных в Таблице данных следует, что в диапазоне заявляемого содержания оксидных компонентов получаемая варисторная керамика на основе оксида цинка имеет напряжение пробоя 4,3-4,6 кВ/мм, коэффициент нелинейности 47-53, плотность тока утечки 0,6-7 мкА/см2. По сравнению с прототипом предлагаемая керамика имеет пониженную (0,6 мкА/см2) плотность тока утечки при одинаковом (85 мас.%) содержании оксида цинка. При более высоком (до 95 мас.%) содержании оксида цинка и, соответственно, меньшем содержании легирующих оксидов, предлагаемое изобретение позволяет получить более дешевую высоковольтную варисторную керамику при обеспечении ее высоких электрических характеристик.
название | год | авторы | номер документа |
---|---|---|---|
Высоковольтная оксидно-цинковая варисторная керамика | 2019 |
|
RU2712822C1 |
ОКСИДНО-ЦИНКОВАЯ ВАРИСТОРНАЯ КЕРАМИКА | 2014 |
|
RU2568444C1 |
СПОСОБ ПОЛУЧЕНИЯ ВАРИСТОРНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЦИНКА | 2014 |
|
RU2564430C2 |
КЕРАМИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ВАРИСТОРОВ НА ОСНОВЕ ОКСИДА ЦИНКА | 2012 |
|
RU2514085C2 |
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ МЕТАЛЛООКСИДНЫХ НЕЛИНЕЙНЫХ РЕЗИСТОРОВ | 1992 |
|
RU2039384C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА И ПРОМЕЖУТОЧНАЯ ПРОКЛАДКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2149087C1 |
КОМПОЗИЦИЯ ДЛЯ ЭЛЕКТРИЧЕСКОГО РЕЗИСТИВНОГО ЭЛЕМЕНТА, ЭЛЕКТРИЧЕСКИЙ РЕЗИСТИВНЫЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1996 |
|
RU2120146C1 |
СТЕКЛУЕМАЯ СМЕСЬ ДЛЯ ВЫСОКОСОРТНОГО СТЕКЛА | 1995 |
|
RU2137725C1 |
МАТЕРИАЛ ДЛЯ ВАРИСТОРА ВЫСОКОЙ НАПРЯЖЕННОСТИ ПОЛЯ | 2010 |
|
RU2570656C2 |
СТЕКЛО ПРЕИМУЩЕСТВЕННО ДЛЯ СПАИВАНИЯ ЭЛЕМЕНТОВ МАГНИТНЫХ ГОЛОВОК | 1991 |
|
RU2024448C1 |
Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия и кобальта в количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. Оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72. Получаемая варисторная керамика имеет напряжение пробоя 4,3-4,6 кВ/мм, коэффициент нелинейности 47-53 и плотность тока утечки 0,6-7 мкА/см2. Технический результат изобретения – снижение плотности тока утечки. При обеспечении высоких электрических характеристик получаемая высоковольтная варисторная керамика является более дешевой. 1 табл., 4 пр.
Оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия и кобальта, отличающаяся тем, что керамика содержит оксидные компоненты в следующем количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3, при этом оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72.
ОКСИДНО-ЦИНКОВАЯ ВАРИСТОРНАЯ КЕРАМИКА | 2014 |
|
RU2568444C1 |
СПОСОБ ПОЛУЧЕНИЯ ВАРИСТОРНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЦИНКА | 2014 |
|
RU2564430C2 |
Колосоуборка | 1923 |
|
SU2009A1 |
CN 0104671772 A, 03.06.2015 | |||
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя | 1920 |
|
SU57A1 |
Авторы
Даты
2017-03-09—Публикация
2016-04-01—Подача