Способ выращивания монокристаллической пленки FeBO на диамагнитной подложке Российский патент 2017 года по МПК C30B9/04 C30B9/12 C30B19/02 C30B19/12 C30B29/22 C01B35/12 H01F41/14 H01F41/28 

Описание патента на изобретение RU2616668C1

Техническое решение относится к области получения монокристаллической пленки FeBO3 на диамагнитной подложке для магнитных, оптических, магнитооптических и резонансных исследований.

В качестве прототипа выбран способ выращивания монокристаллов FexGa1-xBO3 с заданной концентрацией ионов Fe и Ga (патент №73171, UA, 2012 г.).

В этом способе шихту массой 250 г ((Fe2O3 + Ga2O3) - 18,6 мас. %, В2О3 - 42,4 мас. %, PbO - 27,3 мас. %, PbF2 - 11,7 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в печь электрического сопротивления. Температуру в печи за 3,5 часа поднимают до Т=900°С и выдерживают 24 ч с перемешиванием раствора-расплава при скорости вращения мешалки ω=60 об/мин. Затем мешалку отключают и понижают температуру за 20 мин до 800°C с последующей выдержкой и перемешиванием (ω=60 об/мин) в течение 2 ч. Затем температуру понижают до 760°С со скоростью 0,3°С/ч, при этой температуре мешалка, с выросшими на ней кристаллами, была поднята над тиглем, а печь отключена.

Способ не обеспечивает получение монокристаллической пленки FeBO3 на диамагнитной подложке.

В основу изобретения поставлена задача усовершенствовать способ выращивания монокристаллов. Техническим результатом является получение тонкой эпитаксиальной магнитной монокристаллической пленки FeBO3 на диамагнитной подложке GaBO3.

Поставленная цель достигается тем, что в способе выращивания монокристаллической пленки FeBO3 на диамагнитной подложке, включающем наплавление шихты, содержащей Fe2O3, В2О3, PbO, PbF2, нагрев и выдержку раствора-расплава при постоянном перемешивании, его охлаждение, компоненты берут в соотношении, мас. %: Fe2O3 - 5,73; В2О3 - 51,23; PbO - 29,31; PbF2 - 13,73, нагревают до 900-950°C с перемешиванием, охлаждают до 820-830°С, при этой температуре опускают держатель с диамагнитным кристаллом GaBO3 и выдерживают 0,5-3 часа с перемешиванием, затем температуру медленно понижают со скоростью 3-40°С/ч до 800°С и кристаллодержатель извлекают из печи.

Отличительными признаками заявленного технического решения являются: компоненты берут в соотношении: Fe2O3 - 5,37 мас. %, В2О3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %; тигель с раствором-расплавом помещают в ростовую печь, нагревают до 900-950°С и выдерживают с перемешиванием при этой температуре в течение суток, затем температуру быстро снижают до 820-830°С и опускают в раствор-расплав кристалл GaBO3 закрепленный на мешалке, выдерживают в течение 0,5-3 часа, потом температуру со скоростью 3-40°С/ч снижают до 800°С, кристаллодержатель извлекают из печи.

Совокупность существенных признаков технического решения впервые обеспечивает получение тонкой эпитаксиальной магнитной монокристаллической пленки FeBO3 на диамагнитной подложке.

На фиг. 1 представлено ориентированное нарастание кристаллов FeBO3 на диамагнитной подложке GaBO3.

На фиг. 2 представлено слияние (коалесценция) объемного зародыша с уже образовавшейся пленкой FeBO3.

На фиг. 3 представлен скол синтезированного образца. Видна слоистая структура: верхний темный слой - FeBO3, нижний, более светлый - GaBO3.

Способ реализуется следующим образом.

Пример 1. Получение эпитаксиальной пленки FeBO3 на кристаллах GaBO3, наросших на платиновой мешалке в результате раствор-расплавного синтеза.

Шихту массой 300 г (Fe2O3 - 5,73 мас. %, B2O3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в ростовую печь с последующим разогревом до температуры Т=950°С и выдерживают 24 часа с перемешиванием раствора-расплава при скорости вращения мешалки ω=60 об/мин. Затем мешалку извлекают и понижают температуру за 30 мин до 825°С, при Т=835°С в раствор-расплав погружают мешалку-держатель с закрепленными (естественным образом, в процессе роста бората галлия) кристаллами GaBO3. Далее система выдерживается при Т=825°С и перемешиванием со скоростью ω=60 об/мин в течение 1 ч. Затем температуру понижают до 800°С со скоростью 3°С/ч, при этой температуре мешалку, с закрепленными на ней кристаллами, медленно извлекают из печи.

В результате наросшие на мешалке-держателе прозрачные кристаллы бората галлия приобрели зеленоватый оттенок, свойственный FeBO3. Толщина образовавшейся пленки бората железа порядка 6-10 мкм.

Пример 2. Получение эпитаксиальной пленки FeBO3 на кристаллах GaBO3, закрепленных в платиновой оправе.

Шихту массой 300 г (Fe2O3 - 5,73 мас. %, B2O3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в ростовую печь. Температуру в печи поднимают до Т=900°С и выдерживают 24 часа с перемешиванием раствора-расплава при скорости вращения мешалки ω=60 об/мин. Затем мешалку извлекают и понижают температуру за 30 мин до 830°С, при Т=835°С в раствор-расплав погружали мешалку-держатель с закрепленными в оправе шестиугольными пластинчатыми кристаллами GaBO3 размером 4 и 4,5 мм в поперечнике. Далее система выдерживается при Т=830°С и перемешиванием ω=60 об/мин в течение 3 ч. Затем температуру понижают до 800°С со скоростью 10°С/ч, при этой температуре мешалку, с закрепленными на ней кристаллами, медленно извлекают из печи.

В результате извлеченные из оправы-держателя два прозрачных кристалла бората галлия покрылись зеленоватой пленкой FeBO3. Толщина образовавшейся пленки бората железа порядка 5 мкм.

Пример 3. Получение эпитаксиальной пленки FeBO3 на кристалле GaBO3, помещенном в перфорированный конус.

Шихту массой 300 г (Fe2O3 - 5,73 мас. %, B2O3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в ростовую печь. Температуру в печи поднимают до Т=900°С и выдерживают 24 часа с перемешиванием раствора-расплава при скорость вращения мешалки ω=60 об/мин. Затем мешалку извлекают и понижают температуру за 30 мин до 820°С, при этой температуре в раствор-расплав погружают мешалку, с закрепленным на ней платиновым перфорированным конусом, содержащим шестиугольный пластинчатый кристалл GaBO3 размером 4 мм в поперечнике. Далее систему выдерживают при Т=820°C с перемешиванием со скоростью ω=60 об/мин в течение 0,5 ч. Затем температуру понижают до 800°С со скоростью 40°С/ч, при этой температуре мешалка, с закрепленным на ней конусом, была медленно извлечена из печи.

В результате находящийся в конусе кристалл бората галлия приобрел зеленоватый оттенок, что свидетельствует о наличии пленки FeBO3. Толщина образовавшейся пленки бората железа порядка 3 мкм.

Нагревание раствора-расплава до температуры 900-950°С определяется условиями его гомогенизации. Последующее быстрое охлаждение до температур 820-830°С обусловлено следующим: ниже 820°С происходит резкое переохлаждение и появление большого количества центров кристаллизации, выше 830°С появляются кристаллы Fe3BO6. Температурный режим определен экспериментальным путем. Дальнейшее понижение температуры до 800°С определяется тем, что при данной температуре раствор-расплав обладает оптимальной вязкостью для извлечения образца из ростовой печи.

Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке GaBO3 дает возможность получить новый композитный магнитооптический материал.

Похожие патенты RU2616668C1

название год авторы номер документа
Способ выращивания монокристаллов FeBOвысокого структурного совершенства 2020
  • Ягупов Сергей Владимирович
  • Могиленец Юлия Александровна
  • Снегирёв Никита Игоревич
  • Стругацкий Марк Борисович
  • Селезнева Кира Андреевна
  • Любутин Игорь Савельевич
  • Любутина Марианна Владимировна
RU2740126C1
Способ повторного использования раствора-расплава при синтезе бората железа 2021
  • Могиленец Юлия Александровна
  • Селезнева Кира Андреевна
  • Стругацкий Марк Борисович
  • Ягупов Сергей Владимирович
RU2771168C1
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ БОРАТА ГАЛЛИЯ GaBO 1991
  • Петраковский Г.А.
  • Руденко В.В.
  • Степанов Г.Н.
RU2019584C1
Способ многократного использования раствора-расплава при синтезе FeBO 2021
  • Ягупов Сергей Владимирович
  • Могиленец Юлия Александровна
  • Снегирёв Никита Игоревич
  • Стругацкий Марк Борисович
  • Селезнева Кира Андреевна
  • Любутин Игорь Савельевич
  • Любутина Марианна Владимировна
RU2769681C1
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ ВИСМУТ-СВИНЕЦ-СТРОНЦИЙ-КАЛЬЦИЕВОГО КУПРАТА 1991
  • Азизов А.В.
  • Белицкий А.В.
  • Гончаренко Л.Н.
  • Селезнева Н.Г.
  • Урсуляк Н.Д.
  • Яковлев Г.А.
SU1833659A3
Способ получения монокристаллов @ из раствора-расплава 1982
  • Безматерных Леонард Николаевич
  • Мащенко Валентин Григорьевич
  • Чихачев Владимир Андреевич
  • Близняков Василий Семенович
SU1059029A1
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЛИТИЕВОЙ ФЕРРОШПИНЕЛИ LIFEO 1992
  • Безматерных Л.Н.
  • Соколова Н.А.
RU2072004C1
СПОСОБ ПОЛУЧЕНИЯ МАГНЕТИТСОДЕРЖАЩЕГО ПОРИСТОГО СТЕКЛА 2022
  • Конон Марина Юрьевна
  • Анфимова Ирина Николаевна
  • Полякова Ирина Георгиевна
  • Антропова Татьяна Викторовна
RU2791915C1
Способ выращивания кристалла из испаряющегося раствор-расплава 2019
  • Кох Константин Александрович
  • Кузнецов Артем Борисович
  • Симонова Екатерина Александровна
RU2732513C1
Способ получения монокристаллических плёнок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решётки плёнки и подложки 2022
  • Шумилов Алексей Гениевич
  • Федоренко Андрей Александрович
  • Недвига Александр Степанович
  • Семук Евгений Юрьевич
  • Наухацкий Игорь Анатольевич
  • Бержанский Владимир Наумович
  • Шапошников Александр Николаевич
  • Томилин Сергей Владимирович
RU2791730C1

Иллюстрации к изобретению RU 2 616 668 C1

Реферат патента 2017 года Способ выращивания монокристаллической пленки FeBO на диамагнитной подложке

Изобретение относится к области получения монокристаллических пленок на подложках для магнитных, оптических, магнитооптических и резонансных исследований. Шихту наплавляют в платиновый тигель, компоненты берут в соотношении, мас.%: Fe2O3 - 5,37, В2О3 - 51,23, PbO - 29,31, PbF2 - 13,73. После этого тигель с раствором-расплавом помещают в ростовую печь, нагревают до 900-950°С и выдерживают с перемешиванием при этой температуре в течение суток. Затем температуру быстро снижают до 820-830°С, опускают в раствор-расплав закрепленный на кристаллодержателе диамагнитный кристалл GaBO3 и выдерживают в течение 0,5-3 часа с перемешиванием. Затем температуру медленно понижают со скоростью 3-40°С/ч до 800°С и извлекают кристаллодержатель из печи. Изобретение позволяет получать монокристаллическую пленку FeBO3 на диамагнитной подложке GaBO3. 3 ил., 3 пр.

Формула изобретения RU 2 616 668 C1

Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке, включающий наплавление шихты, содержащей Fе2О3, В2О3, PbO, PbF2, нагрев и выдержку раствора-расплава при постоянном перемешивании, его охлаждение, отличающийся тем, что компоненты берут в соотношении, мас. %: Fе2О3 - 5,73; В2O3 - 51,23; РbО - 29,31; PbF2 - 13,73, нагревают до 900-950°С с перемешиванием, охлаждают до 820-830°С, при этой температуре опускают держатель с диамагнитным кристаллом GaBO3 и выдерживают 0,5-3 часа с перемешиванием, затем температуру медленно понижают со скоростью 3-40°С/ч до 800°С, кристаллодержатель извлекают из печи.

Документы, цитированные в отчете о поиске Патент 2017 года RU2616668C1

Способ получения монокристаллов @ из раствора-расплава 1982
  • Безматерных Леонард Николаевич
  • Мащенко Валентин Григорьевич
  • Чихачев Владимир Андреевич
  • Близняков Василий Семенович
SU1059029A1
Оптический сигнал 1946
  • Месяцев П.П.
SU73171A1
GB 1267817 A, 22.03.1972.

RU 2 616 668 C1

Авторы

Ягупов Сергей Владимирович

Стругацкий Марк Борисович

Могилец Юлия Александровна

Селезнева Кира Андреевна

Даты

2017-04-18Публикация

2015-11-02Подача