СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ ОСНОВНЫХ ХАРАКТЕРИСТИК БЛОКА ИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЕЙ Российский патент 2017 года по МПК G01C25/00 

Описание патента на изобретение RU2626288C1

Изобретение относится к навигационному приборостроению и предназначено для оценки основных характеристик блока инерциальных измерителей инерциальной навигационной системы (как платформенной, так и бесплатформенной), содержащего по меньшей мере три однотипных инерциальных измерителя с некомпланарными осями чувствительности, по измерительной информации, полученной в любых допустимых условиях функционирования, в том числе по результатам лабораторных, заводских и приемосдаточных испытаний.

Известен способ калибровки гироскопических измерителей угловой скорости из патента РФ №2156959 с датой приоритета 01.06.1999 г., сущность которого состоит в последовательном принудительном вращении инерциальной курсовертикали с жестко закрепленными на ней гироскопическими измерителями угловой скорости и акселерометрами по трем строительным осям объекта без использования гироскопической стабилизации. Измеряют абсолютные угловые скорости вращения курсовертикали с помощью гироскопов и по представленной модели калибровки определяют дрейфы гироскопов, ошибки масштабных коэффициентов, ошибки асимметрии масштабных коэффициентов и перекосы осей чувствительности гироскопов.

Недостатком известного способа калибровки гироскопических измерителей угловой скорости является его сложность, поскольку необходимо обеспечить вращение объекта по трем ортогональным осям, что накладывает ограничения на условия проведения калибровки. Также для осуществления вышеуказанного способа требуется предварительная калибровка блока акселерометров, так как в процессе калибровки гироскопов необходимо использовать измерительную информацию акселерометров, а возможность одновременной калибровки акселерометров и гироскопов отсутствует.

Известен способ калибровки инерциального измерительного модуля по каналу акселерометров из патента РФ №2477864 с датой приоритета 30.11.2011 г., включающий оценку параметров математической модели погрешностей при задании различных ориентаций модуля относительно вектора ускорения свободного падения на грубом поворотном столе. При этом определяют нулевые сигналы и матрицу, описывающую относительное расположение измерительных осей, перекрестные связи, масштабные коэффициенты акселерометров, затем проводят привязку матрицы, описывающей относительное расположение измерительных осей, перекрестные связи, масштабные коэффициенты акселерометров к осям инерциального измерительного модуля, для чего точно определяют ориентацию модуля в двух различных положениях относительно вектора ускорения свободного падения, за исключением положений, получающихся путем разворота инерциального измерительного модуля на 180° вокруг любой оси.

Недостатком способа калибровки инерциального измерительного модуля по каналу акселерометров является его сложность, поскольку необходимо обеспечить вращение объекта по трем ортогональным осям, что накладывает ограничения на условия проведения калибровки. Также недостатком способа калибровки является отсутствие возможности калибровки гироскопов, входящих в инерциальный измерительный модуль наряду с акселерометрами.

В качестве прототипа принят способ калибровки бесплатформенных инерциальных навигационных систем (патент РФ №2406973 с датой приоритета 05.02.2009 г.), посредством которого возможно производить оценку основных характеристик измерительных каналов бесплатформенных инерциальных навигационных систем (далее - БИНС).

Способ основан на оценке калибровочных коэффициентов математической модели погрешностей при установке БИНС в определенные характерные положения. Причем калибровочные коэффициенты инерциальных измерителей навигационной системы определяются в два этапа: на первом этапе по составляющим вектора ошибок системы, полученным по показаниям системы, показаниям калибровочного стола и значениям широты места установки калибровочного стола, определяются входные сигналы модели ошибок навигационной системы, являющиеся функциями калибровочных коэффициентов, на втором этапе по входным сигналам модели ошибок системы вычисляются калибровочные коэффициенты инерциальных измерителей.

Недостатками рассматриваемого в качестве прототипа способа калибровки бесплатформенных инерциальных навигационных систем являются узкая область применения, сложность и большая длительность калибровки. Способ применим только к нерезервированной трехосной ортогональной кинематической схеме, что исключает возможность использования данного способа для калибровки блока инерциальных измерителей БИНС с избыточным набором чувствительных элементов. Кроме того, для осуществления способа калибровки бесплатформенных инерциальных навигационных систем необходимо выставлять БИНС в характерные положения с высокой точностью, что усложняет процесс и увеличивает длительность калибровки.

Технической задачей изобретения является получение оценок параметров математической модели погрешностей блока инерциальных измерителей в условиях ограниченного объема фактически имеющейся измерительной информации.

Технические результаты заявляемого способа определения погрешностей основных характеристик блока инерциальных измерителей заключаются:

- в повышении точности оценки параметров математической модели погрешностей блока инерциальных измерителей (даже в условиях ограниченного объема фактически имеющейся измерительной информации);

- в упрощении и ускорении процесса оценки параметров математической модели погрешностей блока инерциальных измерителей;

- в снижении требований по выставляемым характерным положениям и разворотам блока инерциальных измерителей, что позволяет проводить оценку параметров математической модели погрешностей в условиях ограниченной подвижности блока инерциальных измерителей.

Данные технические результаты достигаются за счет того, что способ определения погрешностей основных характеристик блока инерциальных измерителей заключается в осуществлении поворотов блока чувствительных элементов инерциальных измерителей, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с последующей регистрацией измерительной информации в фиксированных положениях и обработкой. При обработке измерительной информации на первом этапе выполняют пересчет измерительной информации из выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей. На втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения. На третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации.

Регистрация измерительной информации производится в течение временного интервала, обеспечивающего определение измеряемой величины с необходимой точностью.

При обработке результатов измерений осуществляется численное решение системы уравнений, составленной в соответствии с математической моделью погрешностей блока чувствительных элементов инерциальных измерителей. Сформированная при этом нелинейная система уравнений является избыточной относительно оцениваемых параметров математической модели погрешностей. Для ее решения используется многопараметрическая минимизация целевой функции, представленной в виде суммы квадратов разности левой и правой частей уравнений, посредством одного из методов многопараметрической оптимизации.

На фиг. 1 представлена последовательность действий для определения погрешностей основных характеристик блока инерциальных измерителей.

Рассмотрим реализацию предлагаемого способа на примере оценки составляющих математической модели погрешностей блока инерциальных измерителей, состоящего из четырех акселерометров, оси чувствительности которых расположены на конусе.

Решение данной задачи осуществляется в три этапа.

На первом этапе для оценки составляющих математической модели погрешностей блока акселерометров используется измерительная информация блока акселерометров, регистрируемая в нескольких различных фиксированных пространственных положениях. Регистрация измерительной информации производится в течение временного интервала, обеспечивающего определение измеряемой величины с необходимой точностью.

Полученные значения выходного кода по каждому акселерометру усредняются на интервале записи tИНТ измерительной информации в каждом фиксированном положении, и рассчитывается проекция вектора, действующего на прибор ускорения на ось чувствительности акселерометра в соответствии с формулой (1).

где ΔWAi - приращение интеграла проекции кажущегося ускорения на ось чувствительности i-го акселерометра за такт опроса (i=1, 2, 3, 4), м/с;

Mi - значение масштабного коэффициента i-го акселерометра, м/с;

ΔNi- - приращение выходного кода i-го акселерометра, ед. кода;

τi - смещение нулевого сигнала i-го акселерометрического канала (i=1, 2, 3, 4), м/с2;

tИНТ - длительность интервала опроса, с.

На втором этапе формируются рабочие тройки некомпланарных векторов по показаниям наборов троек акселерометров (исходя из наличия четырех акселерометров).

Предположим, что в рамках рассматриваемой математической модели погрешностей блока инерциальных измерителей БИНС никакие три оси чувствительности акселерометров не лежат в одной плоскости, тогда, используя любую тройку (из четырех возможных) измерителей, можно оценить величину ускорения, действующего на блок инерциальных измерителей БИНС.

С помощью математической модели погрешностей блока инерциальных измерителей для каждой рабочей тройки рассчитываются проекции в прямоугольную систему координат. По этим проекциям рассчитывается общее значение действующего ускорения на блок инерциальных измерителей БИНС по данным с рассматриваемой рабочей тройки. Переход от проекций на оси чувствительности акселерометров к проекциям на оси прямоугольной системы координат происходит с помощью матрицы перехода МА (2), которая содержит углы, характеризующие погрешность ориентации оси чувствительности i-го акселерометра по отношению к ее номинальному положению (углы αi=1..4, βi=1..4):

где МА - матрица, связывающая оси чувствительности акселерометров с осями прямоугольной системы координат;

ΔWin - проекция кажущегося ускорения на оси прямоугольной системы координат (i=X, Y, Z).

Таким образом, для каждой рабочей тройки по каждому выставляемому положению записывается уравнение, где в левой части располагаются уточняемые характеристики математической модели погрешностей блока инерциальных измерителей, а в правой - модуль вектора ускорения, действующего на инерциальные измерители.

Для варианта с четырьмя акселерометрами записывается четыре таких уравнения:

где - модуль вектора кажущегося ускорения, действующего на прибор.

Предполагается, что модуль вектора кажущегося ускорения, действующего на блок инерциальных измерителей БИНС, известен с точностью, достаточной для проведения испытаний. Набор ориентаций блока инерциальных измерителей рассматривается исходя из того, чтобы количество уравнений системы (3) по всем ориентациям было избыточным по отношению к количеству уточняемых характеристик блока инерциальных измерителей БИНС.

На третьем этапе в каждом уравнении минимизируется разность между оценкой модуля вектора кажущегося ускорения, действующего на блок инерциальных измерителей БИНС, и соответствующим эталонным значением (4). При этом варьирование оцениваемых параметров математической модели погрешностей БИНС приводит к их уточнению.

где f - модуль вектора действующего на блок инерциальных измерителей ускорения, рассчитанного с использованием оцениваемых параметров;

Пi - оцениваемые параметры (i=1, 2, …n).

Для решения системы (4) составляется функция рассогласования (5):

Оптимизация функции рассогласования осуществляется посредством многопараметрической оптимизации, например метода покоординатного спуска. Также вместо метода покоординатного спуска может быть использован другой метод оптимизации, в том числе один из градиентных методов, в зависимости от особенностей оцениваемой математической модели погрешностей.

Повышение точности оценки параметров математической модели погрешностей блока инерциальных измерителей, упрощение и ускорение процесса оценки параметров математической модели погрешностей блока инерциальных измерителей и снижение требований по выставляемым характерным положениям и разворотам блока инерциальных измерителей достигается за счет осуществления поворотов блока инерциальных измерителей, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с последующей регистрацией и обработкой измерительной информации. При последующей обработке измерительной информации на первом этапе выполняют пересчет измерительной информации из выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей. На втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения. На третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации.

При этом регистрация измерительной информации производится в течение временного интервала, обеспечивающего определение измеряемой величины с необходимой точностью.

При обработке результатов измерений осуществляется численное решение системы уравнений, составленной в соответствии с математической моделью погрешностей блока инерциальных измерителей. Сформированная при этом нелинейная система уравнений является избыточной относительно оцениваемых параметров математической модели погрешностей. Для ее решения используется многопараметрическая минимизация целевой функции, представленной в виде суммы квадратов разности левой и правой частей уравнений, посредством одного из методов многопараметрической оптимизации.

Похожие патенты RU2626288C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ ИНЕРЦИАЛЬНОГО БЛОКА ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ НА ДВУХОСНОМ ПОВОРОТНОМ СТОЛЕ 2019
  • Федотов Андрей Анатольевич
  • Перепелкина Светлана Юрьевна
RU2717566C1
СПОСОБ КАЛИБРОВКИ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ В ПОЛЕТЕ 2012
  • Макарченко Федор Иванович
  • Межирицкий Ефим Леонидович
  • Румянцев Геннадий Николаевич
  • Шкода Валерия Аршаковна
RU2486472C1
СПОСОБ КАЛИБРОВКИ БЕСПЛАТФОРМЕННЫХ ИНЕРЦИАЛЬНЫХ НАВИГАЦИОННЫХ СИСТЕМ 2009
  • Андреев Алексей Гурьевич
  • Ермаков Владимир Сергеевич
  • Николаев Станислав Георгиевич
  • Колеватов Андрей Петрович
RU2406973C2
СПОСОБ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ ОБЪЕКТА И БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2017
  • Черенков Сергей Анатольевич
  • Лисин Алексей Анатольевич
  • Худяков Александр Александрович
RU2661446C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОШИБОК ОРИЕНТАЦИИ ИЗМЕРИТЕЛЬНЫХ ОСЕЙ ЛАЗЕРНЫХ ГИРОСКОПОВ И МАЯТНИКОВЫХ АКСЕЛЕРОМЕТРОВ В БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЕ 2018
  • Зубов Андрей Георгиевич
  • Колбас Юрий Юрьевич
RU2683144C1
СПОСОБ ОТБОРА ДОСТОВЕРНОЙ ИНФОРМАЦИИ И ИДЕНТИФИКАЦИИ ОТКАЗОВ АКСЕЛЕРОМЕТРОВ И ДАТЧИКОВ УГЛОВОЙ СКОРОСТИ ПРИ ПЯТИ ИЗМЕРИТЕЛЯХ В КАЖДОМ ТРАКТЕ В БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЕ ЛЕТАТЕЛЬНОГО АППАРАТА 2014
  • Дишель Валерий Давидович
  • Трунов Юрий Вадимович
  • Казаков Сергей Васильевич
  • Маслов Андрей Александрович
  • Тимофеев Александр Анатольевич
  • Полисадов Владимир Валерьевич
RU2568191C1
Инерциальный навигационный комплекс для высокоскоростного маневренного объекта 2016
  • Хмелевский Анатолий Сергеевич
  • Щипицын Анатолий Георгиевич
  • Лысов Александр Николаевич
  • Коваленко Валентин Владимирович
RU2657293C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МОДЕЛИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ АКСЕЛЕРОМЕТРОВ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ПО ИЗМЕРЕНИЯМ СПУТНИКОВОЙ НАВИГАЦИИ 2012
  • Дишель Виктор Давидович
  • Межирицкий Ефим Леонидович
  • Немкевич Виктор Андреевич
  • Сапожников Александр Илариевич
  • Соколова Наталья Викторовна
  • Быков Андрей Константинович
  • Сулимов Виктор Григорьевич
RU2504734C1
СПОСОБ И УСТРОЙСТВО КАЛИБРОВКИ ИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЬНЫХ МОДУЛЕЙ 2015
  • Шорин Виталий Сергеевич
  • Никишин Владимир Борисович
  • Синев Андрей Иванович
  • Карпов Михаил Николаевич
  • Сафина Вероника Мударисовна
  • Сафина Екатерина Мударисовна
RU2602736C1
Способ измерения ошибок начальной выставки инерциальной навигационной системы без привязки к внешним ориентирам 2021
  • Колбас Юрий Юрьевич
  • Черемисенов Геннадий Викторович
  • Иванов Максим Алексеевич
  • Люфанов Виктор Евгеньевич
RU2779274C1

Иллюстрации к изобретению RU 2 626 288 C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ ОСНОВНЫХ ХАРАКТЕРИСТИК БЛОКА ИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЕЙ

Изобретение относится к навигационному приборостроению и предназначено для оценки основных характеристик блока инерциальных измерителей инерциальной навигационной системы (как платформенной, так и бесплатформенной), содержащего по меньшей мере три однотипных инерциальных измерителя с некомпланарными осями чувствительности, по измерительной информации, полученной в любых допустимых условиях функционирования, в том числе по результатам лабораторных, заводских и приемосдаточных испытаний. Технический результат – расширение функциональных возможностей на основе повышения точности оценки параметров математической модели погрешности блока инерциальных измерителей, упрощения и ускорения процесса оценки параметров математической модели погрешности блока инерциальных измерителей, снижения ограничений по выставляемым характерным положениям и разворотам блока инерциальных измерителей, что позволяет проводить оценку параметров математической модели погрешности в условиях ограниченной подвижности блока инерциальных измерителей. При этом предлагаемый способ заключается в осуществлении поворотов блока инерциальных измерителей, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с последующей регистрацией и обработкой измерительной информации. При последующей обработке измерительной информации на первом этапе выполняют пересчет измерительной информации из выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей. На втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения. На третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации. 1 ил.

Формула изобретения RU 2 626 288 C1

Способ определения погрешностей основных характеристик блока инерциальных измерителей, заключающийся в осуществлении поворотов блока чувствительных элементов, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с регистрацией измерительной информации в фиксированных положениях и последующей ее обработкой, отличающийся тем, что на первом этапе обработки измерительной информации выполняют пересчет выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей, на втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения, на третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626288C1

СПОСОБ КАЛИБРОВКИ БЕСПЛАТФОРМЕННЫХ ИНЕРЦИАЛЬНЫХ НАВИГАЦИОННЫХ СИСТЕМ 2009
  • Андреев Алексей Гурьевич
  • Ермаков Владимир Сергеевич
  • Николаев Станислав Георгиевич
  • Колеватов Андрей Петрович
RU2406973C2
СПОСОБ КАЛИБРОВКИ ИНЕРЦИАЛЬНОГО ИЗМЕРИТЕЛЬНОГО МОДУЛЯ ПО КАНАЛУ АКСЕЛЕРОМЕТРОВ 2011
  • Корюкин Максим Сергеевич
RU2477864C1
НИКИТИН Н.Н
Курс теоретической механики
- М.: Высшая школа, 1990
Льночесальная машина 1923
  • Чепуль Э.К.
SU245A1
ПЕЛЬПОР Д.С
Гироскопические системы
Ч
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Теория гироскопов и гиростабилизаторов
- М.: Высшая школа, 1986
Парный автоматический сцепной прибор для железнодорожных вагонов 0
  • Гаврилов С.А.
SU78A1
БИНДЕР Я.И., ПАДЕРИНА Т.В., АНУЧИН О.Н
Калибровка датчиков угловой скорости с механическим носителем вектора кинетического момента в составе бесплатформенных инерциальных измерительных модулей
Г
и Н
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
Способ многоканальной регистрации результатов измерений и устройство для его осуществления 1990
  • Ботуз Сергей Павлович
SU1747905A1
Устройство для испытания изделий на случайные вибрации 1978
  • Сумароков Виктор Владимирович
  • Веселов Юрий Васильевич
  • Черепов Виктор Филиппович
SU763714A1

RU 2 626 288 C1

Авторы

Кутовой Валерий Матвеевич

Кутовой Денис Алексеевич

Перепелкина Светлана Юрьевна

Федотов Андрей Анатольевич

Даты

2017-07-25Публикация

2016-03-21Подача