СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА НЕМЕТАЛЛА Российский патент 2018 года по МПК B22F9/02 B82B3/00 

Описание патента на изобретение RU2643288C2

Изобретение относится к области получения порошковых материалов, в том числе к способам и устройствам для получения нанопорошков.

Известен способ и реализующее его устройство для получения дисперсий наночастиц металлов и сплавов при помощи сверхбыстрой лазерной абляции в жидкости [US 2010/0196192 А1, 05.08.2010. 'Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids' B. Liu, Z. Hu, Y. Che, M. Murakami]. Способ заключается в абляции металлов или сплавов, находящихся в потоке жидкости, под действием импульсного лазерного излучения со следующими характеристиками: частота следования импульсов излучения от 10 кГц до 100 МГц, длительность импульса 10 фс - 200 пс, энергия импульса 100 нДж - 1 мДж. Способ позволяет получать стабильные суспензии наночастиц металлов и сплавов в жидкости.

Недостатками данного способа и реализующего его устройства являются: низкая производительность процесса получения наночастиц (несколько миллиграмм в час), низкий КПД импульсного фемто- /пикосекундного лазера (менее 1%) и соответственно высокие энергозатраты на получение наночастиц, необходимость дополнительных технологических этапов (фильтрация, сушка) при извлечении наночастиц из жидкости.

Известен способ и реализующее его устройство для получения нанокристаллических интерметаллических порошков при помощи лазерного испарения [US 6368406 В1 09.04.2002. 'Nanocrystalline intermetallic powders made by laser evaporation' Deevi, Seetharama C. Pithawalla, Yezdi B. Shall, El M. S.]. Способ заключается в испарении смеси металлов или сплавов под действием лазерного излучения. При этом испарение мишени может производиться второй гармоникой Nd-YAG лазера на длине волны 532 нм, с энергией 15-40 мДж, в атмосфере реакционного (кислорода) или инертного газа. Испарению могут подвергаться как одна мишень со смесью или сплавом металлов, так и две мишени с отдельными металлами.

Недостатком данного способа и устройства является то, что в качестве исходного материала использованы металлы и сплавы, так как коэффициент отражения лазерного излучения от металлов очень высок (до 97%). В результате производительность и эффективность данного способа оказываются очень низкими: производительность - порядка 0,1-0,5 г/ч, энергозатраты - порядка 2 кВт*ч/г. Кроме того, использование двух мишеней, испаряемых одним лазером, делает необходимым перенос луча с одной мишени на другую и точный учет времени испарения каждого материала, что в сочетании с протекающими химическими реакциями взаимодействия паров металлов с газом в реакционной камере делает практически невозможным получение наночастиц сложных соединений и точных смесевых составов неметаллов.

Известен способ и реализующее его устройство для получения нанопорошков оксидов путем испарения материалов под действием излучения CO2-лазера и последующей конденсации паров в потоке газов [Muller Е., Oestreich Ch., Рорр U., Michel G., Staupendahl G., Henneberg K.-H. Characterization of nanocrystalline oxide powders prepared by CO2 laser evaporation. J. KONA - Powder and Particle, 1995, №13, pp. 79-90]. В устройстве, реализующем данный способ, порошки оксидов, их смесей или твердых растворов насыпанные в кювету, подвергали действию сфокусированного лазерного излучения. В зоне воздействия луча происходило испарение материала мишени. Пары мигрировали в холодную зону и конденсировались. Сконденсировавшиеся наночастицы переносились газовым потоком и собирались в фильтре. При средней мощности излучения порядка 5 кВт максимальная производительность нанопорошка ZrO2 составляла 130 г/час, размер частиц составлял dBET=60 нм.

Недостатком данного способа является то, что при воздействии на материал мишени непрерывного лазерного излучения образуется зона постоянно существующего расплава, за счет высокой теплопроводности которого происходит рассеяние поглощенной энергии лазерного излучения и снижение эффективности процесса испарения материала мишени. Кроме того, так как процесс испарения непрерывный, над зоной расплава постоянно существует облако паров материала мишени, что создает условия для неограниченного роста в нем зерен нанопорошка. Для снижения размеров зерна вынужденно используют в качестве носителей чистые газы (гелий, кислород) при давлениях ниже атмосферного, что значительно усложняет конструкцию и эксплуатацию всей установки. При использовании же импульсного режима с высокой частотой следования импульсов излучения (т.е., когда поверхность мишени не успевает переместиться за время между импульсами на расстояние, большее или равное диаметру фокусного пятна) процесс испарения-конденсации в данном случае аналогичен непрерывному и имеет все вышеперечисленные недостатки, а энергозатраты такого режима возрастают за счет потерь на модуляцию излучения лазера.

Наиболее близким по технической сущности к предложенному способу (прототип) является способ получения ультрадисперсных порошков и устройство для его реализации [RU, 2185931 C1, B22F 9/02, 9/12 Иванов М.Г., Котов Ю.А., Осипов В.В., Саматов О.М., 24.01.2001], в котором получение нанопорошков сложных соединений и смесевых составов осуществляют за счет испарения вещества излучением импульсно-периодического лазера с последующей конденсацией испаренного вещества в потоке газа, при этом поверхность испаряемого вещества перемещают в фокальной плоскости относительно точки фокуса лазерного излучения с постоянной скоростью vп такой, что:

vп≥d/τ,

где d - диаметр фокусного пятна,

τ - время между импульсами излучения;

поток газа направляют перпендикулярно поверхности испаряемого вещества, а скорость потока газа vг над поверхностью вещества выбирают из условия:

vг≥2r/τ,

где r - радиус зоны разлета испаренного вещества в паровой фазе,

τ - время между импульсами излучения.

Недостатком данного способа является то, что, как и в случае аналога [Muller Е., Oestreich Ch., Рорр U., Michel G., Staupendahl G., Henneberg K.-H. Characterization of nanocrystalline oxide powders prepared by CO2 laser evaporation. J. KONA - Powder and Particle, 1995, №13, pp. 79-90.], при испарении материала под действием лазерного излучения эффективность этого процесса крайне низка. В работе [В. Лисенков, В. Осипов. Численное моделирование воздействия излучения импульсного CO2-лазера на мишень из тугоплавких оксидов. Оптика атмосферы и океана, 2012, т. 25, №3, с. 216-220] показано, что при воздействии излучения CO2-лазера (длина волны 10,6 мкм) на диэлектрики в материале мишени поглощается порядка 30% энергии, и от этой энергии доля, приходящаяся на испарение, составляет 35-45% в зависимости от материала мишени. Таким образом, на испарение и получение нанопорошка используется только 10-12% энергии лазерного излучения. В работе [Котов Ю.А., Саматов О.М., Иванов М.Г., Мурзакаев A.M., Медведев А.И., Тимошенкова О.Р., Демина Т.М., Вьюхина И.В. Получение композиционных нанопорошков с помощью волоконного иттербиевого лазера и их характеристики, ЖТФ, 2011, №5. с. 65-68.] было показано, что ровно такие же потери энергии при испарении материала происходят и в случае использования излучения волоконного иттербиевого лазера с длиной волны 1,07 мкм. Более того, при испарении материалов, плохо поглощающих (прозрачных) на длине волны излучения лазера, эффективность процесса испарения может стремиться к нулю. Испарение мишени, изготовленной из таких чистых монокристаллических материалов, не происходит, а изготовленной из порошков, происходит только в начальный момент времени. Затем поверхность испаряемого порошка оплавляется, глубина поглощения увеличивается, и удельной энергии становится недостаточно не только для испарения, но иногда даже и для плавления материала. При этом вся поглощенная в мишени энергия лазерного излучения теряется за счет теплопроводности.

Технической задачей настоящего изобретения является повышение эффективности процесса получения нанопорошка неметалла с помощью испарения вещества излучением лазера.

Решение технической задачи достигается тем, что

1. в способе получения нанопорошка неметалла, включающем испарение мишени излучением лазера с последующей конденсацией испаренного вещества в потоке газа, испаряют мишень, содержащую испаряемый материал и химическое соединение переходного металла, поглощающие излучение на длине волны, используемого для испарения данного вещества лазера, при этом концентрация химического соединения переходного металла составляет от 0,0001 до 10 мольных % испаряемого материала.

2. в способе по п. 1 используют излучение твердотельного лазера, работающего на ионах переходных металлов, при этом в качестве химического соединения мишени используют химическое соединение переходного металла, на ионах которого работает лазер.

3. в способе по п. 2 в качестве химического соединения мишени используют вид химического соединения переходного металла, которому соответствует испаряемый материал, при этом при испарении оксидов используют оксиды переходного металла, а нитридов - нитриды переходного металла.

4. в способе по п. 2 в качестве химического соединения мишени используют химическое соединение переходного металла, разлагаемое в атмосфере кислорода.

Заявляемый способ отличается от известных признаками, указанными в отличительной части формулы.

Новый технический результат обусловлен тем, что

- при больших концентрациях (до 10 мольн. %) химическое соединение переходного металла, добавленное к испаряемому материалу, поглощает лазерное излучение,

поглощенная энергия выделяется в тонком (обычно, единицы - десятки микрометров) поверхностном слое мишени, и реализуется режим, близкий к развитому испарению, т.е. когда выделение энергии в поверхностном слое вещества мишени за счет поглощения в нем падающего излучения происходит настолько быстро, что он успевает испариться прежде, чем процесс теплопроводности и другие процессы теплоотдачи способны отвести от слоя выделившееся тепло. При этом эффективность процессов испарения материала и получения наночастиц существенно возрастает. В идеальном случае до 100% поглощенной лазерной энергии может быть затрачено на испарение материала.

- в случае малых концентраций (от 0,0001 мольн. %) добавляемое вещество (примесь) создает дефекты с энергетическими уровнями, находящимися внутри запрещенной зоны испаряемого полупроводника или диэлектрика. Под действием лазерного излучения в испаряемом веществе существенно возрастает концентрация электронов и дырок в соответствующих зонах (проводимости и валентной соответственно) вследствие их многоступенчатого перехода через промежуточные энергетические уровни дефектов (примеси). На свободных носителях зарядов происходит дополнительное поглощение лазерного излучения, при этом в облучаемом объеме выделяется тепло, дополнительно происходит тепловая генерация ионных дефектов, повышается показатель преломления среды, происходит самофокусировка пучка и повышается интенсивность излучения, что приводит к ускорению всех вышеперечисленных процессов. Таким образом, даже исходно (без примеси) прозрачный для лазерного излучения полупроводниковый или диэлектрический материал при наличии примеси малой концентрации начинает интенсивно поглощать излучение, эффективность процессов испарения и соответственно получения наночастиц существенно возрастает. Следует отметить, что если в начальный момент времени добавляемое вещество (примесь) не входило в кристаллическую структуру испаряемого вещества (например, добавлено в виде порошка или нанесено на поверхность частиц в виде раствора солей), то после первоначального воздействия лазерного излучения на поверхности мишени формируется оплавленный слой. В структуре этого оплавленного слоя испаряемого вещества примесь образует атомарные дефекты - замещенные и междоузельные атомы, вакансии с энергетическими уровнями, находящимися внутри запрещенной зоны, и взаимодействие лазерного излучения с веществом происходит в соответствии с описанным выше процессом.

- в случае использования твердотельного лазера, работающего на ионах переходных металлов, проблема выбора примесного вещества, повышающего эффективность процесса испарения, упрощается. Ионы переходных металлов, на которых работает лазер, будут эффективно поглощать лазерное излучение в испаряемом материале.

- если к испаряемому веществу добавляется тот вид химического соединения переходного металла, который соответствует испаряемому веществу, т.е. при испарении оксидов, добавляют оксиды, нитридов - нитриды и т.п., то получаемый нанопорошок в наименьшей степени загрязнен примесными химическими веществами. Во время испарения под действием лазерного излучения происходит разложение большинства химических веществ. Так, при испарении Al2O3 наибольшее давление паров при фиксированной температуре над поверхностью мишени имеют Al2O и AlO. В случае, когда к испаряемому материалу добавлено химическое соединение другого вида, например к оксиду - нитрид, возможно формирование наночастиц примесной фазы нитрида (в некоторых случаях нитрита, нитрата), загрязняющей полученный материал.

- если вещество испаряется в кислородсодержащей атмосфере (воздухе), то при использовании химических соединений переходного металла, разлагаемых в атмосфере кислорода, получаемый порошок будет в наименьшей степени загрязнен примесными соединениями. Так, ацетилацетонаты редкоземельных элементов (например, C15H21O6Nd) при нагреве в воздухе разлагаются на оксид редкоземельного элемента, воду и углекислый газ, не приводя к загрязнению (исключая редкоземельные ионы) получаемого нанопорошка.

- в случае, когда испаряемое вещество в виде порошка пропитывается раствором соли переходного металла, достигается максимальная однородность распределения примесных ионов в материале мишени, что очень важно для формирования необходимой энергетической структуры испаряемого материала и эффективного испарения. При добавлении малых концентраций (0,0001-0,01 мольн. %) необходимая однородность перемешивания (на уровне отдельных частиц) возможна, в большинстве случаев только в случае пропитки порошка раствором соли примесного вещества (нитрата, карбоната и др.) и невозможна при перемешивании порошка с порошком.

Предложенный способ по сравнению с прототипом обеспечивает повышение эффективности процесса получения нанопорошков неметаллов при испарении вещества излучением лазера.

Работоспособность предлагаемого способа проверена на примере установки по получению нанопорошка, где для испарения материала мишени использовался волоконный иттербиевый лазер. Средняя мощность излучения лазера до 1 кВт. Средняя плотность мощности лазерного излучения на мишени ~106 Вт/см2. В качестве рабочего газа использовался воздух при атмосферном давлении. Расход газа составлял 3 л/мин. Мишень состояла из прессованных порошков оксидов.

При испарении мишени из оксида алюминия в виде прессованного порошка с размерами частиц 5-10 мкм излучением волоконного иттербиевого лазера со средней мощностью 500 Вт в начальный момент времени производительность составляла 8 г/ч, т.е. энергозатраты составляли 62,5 кВт*ч/кг. Через несколько (5-10) минут поверхность мишени оплавлялась, испарение практически прекращалось, т.е. энергозатраты стремились к бесконечности. При пропитке порошка оксида алюминия водным раствором нитрата эрбия с концентрацией 0,0001 мольн. % производительность составляла 8-10 г/ч и не изменялась в течение всего процесса получения нанопорошка (порядка 2 ч). При добавлении к порошку Al2O3 порошка Yb2O3 с концентрацией 0,1 мольн. % производительность составляла 10-12 г/ч и не изменялась в течение всего процесса получения нанопорошка (2 ч).

При испарении мишени из оксида иттрия производительность в начальный момент времени составляла 25 г/ч, энергозатраты - 20 кВт*ч/кг. Через 10-20 минут производительность снижалась до 18 г/ч, а энергозатраты возрастали до 28 кВт*ч/кг. При добавлении к порошку Y2O3 порошка Yb2O3 с концентрацией 5 мольн. % производительность составляла 30-32 г/ч и не изменялась в течение всего процесса получения нанопорошка (3,5 ч). При добавлении к порошку Y2O3 порошка ацетилацетоната неодима (C15H21O6Nd) с концентрацией 0,1 мольн. % производительность составляла 28-30 г/ч и не изменялась в течение всего процесса получения нанопорошка (3 ч).

Похожие патенты RU2643288C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА СОЕДИНЕНИЙ И СМЕСЕВЫХ СОСТАВОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2016
  • Иванов Максим Геннадьевич
  • Саматов Олег Мазгарович
RU2643287C2
Способ изготовления магнитооптической керамики на основе оксида тербия из нанопорошка, синтезированного лазерным распылением мишени 2021
  • Гапонцев Валентин Павлович
  • Лысак Алексей Сергеевич
  • Садовский Андрей Павлович
RU2773727C1
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2010
  • Иванов Максим Геннадьевич
  • Котов Юрий Александрович
  • Саматов Олег Мазгарович
RU2465983C2
Способ получения бескислородных нанопорошков неорганических соединений или смесевых составов и устройство для его реализации 2022
  • Осипов Владимир Васильевич
  • Платонов Вячеслав Владимирович
  • Тихонов Егор Владимирович
RU2800348C1
Сложный танталат редкоземельных элементов в наноаморфном состоянии 2022
  • Зуев Михаил Георгиевич
RU2787472C1
Метод получения стабилизированных линейных цепочек углерода в жидкости 2019
  • Кутровская Стелла Владимировна
  • Кучерик Алексей Олегович
  • Скрябин Игорь Олегович
  • Осипов Антон Владиславович
  • Самышкин Владислав Дмитриевич
RU2744089C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПЛОТНОЙ, В ТОМ ЧИСЛЕ ОПТИЧЕСКОЙ КЕРАМИКИ С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОФОРЕТИЧЕСКОГО ОСАЖДЕНИЯ НАНОЧАСТИЦ 2016
  • Калинина Елена Григорьевна
  • Иванов Максим Геннадьевич
RU2638205C1
Способ допирования MgO-nAlO керамик ионами железа 2018
  • Осипов Владимир Васильевич
  • Платонов Вячеслав Владимирович
  • Шитов Владислав Александрович
  • Лукьяшин Константин Егорович
RU2684540C1
Способ получения нанодисперсного изотопно-модифицированного борида молибдена 2023
  • Корнев Антон Романович
  • Корнев Роман Алексеевич
RU2811828C1
Способ изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения наночастиц (варианты) 2018
  • Иванов Максим Геннадьевич
  • Калинина Елена Григорьевна
RU2691181C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА НЕМЕТАЛЛА

Изобретение относится к способу получения нанопорошка неметалла. Осуществляют испарение мишени излучением лазера с последующей конденсацией испаренного вещества в потоке газа. Испаряемая мишень содержит испаряемый материал и химическое соединение переходного металла, поглощающие излучение на длине волны используемого для испарения данного вещества лазера. Концентрация химического соединения переходного металла составляет от 0,0001 до 10 мольных % испаряемого материала. В частных случаях осуществления изобретения используют излучение твердотельного лазера, работающего на ионах переходных металлов, при этом в качестве химического соединения мишени используют химическое соединение переходного металла, на ионах которого работает лазер. В качестве химического соединения мишени используют вид химического соединения переходного металла, которому соответствует испаряемый материал, при этом при испарении оксидов используют оксиды переходного металла, а нитридов - нитриды переходного металла. В качестве химического соединения мишени используют химическое соединение переходного металла, разлагаемое в атмосфере кислорода. Обеспечивается повышение эффективности процесса получения нанопорошков неметаллов с помощью испарения вещества излучением лазера. 3 з.п. ф-лы.

Формула изобретения RU 2 643 288 C2

1. Способ получения нанопорошка неметалла, включающий испарение мишени излучением лазера с последующей конденсацией испаренного вещества в потоке газа, отличающийся тем, что испаряют мишень, содержащую испаряемый материал и химическое соединение переходного металла, поглощающие излучение на длине волны используемого для испарения данного вещества лазера, при этом концентрация химического соединения переходного металла составляет от 0,0001 до 10 мольных % испаряемого материала.

2. Способ по п. 1, отличающийся тем, что используют излучение твердотельного лазера, работающего на ионах переходных металлов, при этом в качестве химического соединения мишени используют химическое соединение переходного металла, на ионах которого работает лазер.

3. Способ по п. 2, отличающийся тем, что в качестве химического соединения мишени используют вид химического соединения переходного металла, которому соответствует испаряемый материал, при этом при испарении оксидов используют оксиды переходного металла, а нитридов - нитриды переходного металла.

4. Способ по п. 2, отличающийся тем, что в качестве химического соединения мишени используют химическое соединение переходного металла, разлагаемое в атмосфере кислорода.

Документы, цитированные в отчете о поиске Патент 2018 года RU2643288C2

СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ СЛОЖНЫХ СОЕДИНЕНИЙ И СМЕСЕВЫХ СОСТАВОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2001
  • Иванов М.Г.
  • Котов Ю.А.
  • Осипов В.В.
  • Саматов О.М.
RU2185931C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТЫХ НАНОПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Алексеев Георгий Михайлович
  • Алексеев Борис Георгиевич
  • Алексеева Наталья Борисовна
  • Грибов Алексей Игоревич
  • Духанин Сергей Михайлович
RU2382734C2
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Котов Юрий Александрович
  • Соковнин Сергей Юрьевич
  • Ильвес Владислав Генрихович
  • Чанг Ку Ри
RU2353573C2
US 8491972 B2, 23.07.2013
US 20030145681 A1, 07.08.2003.

RU 2 643 288 C2

Авторы

Иванов Максим Геннадьевич

Калинина Елена Григорьевна

Крутикова Ирина Владимировна

Даты

2018-01-31Публикация

2016-04-20Подача