Способ определения эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей в воде Российский патент 2018 года по МПК G01N33/18 G01N21/47 

Описание патента на изобретение RU2648351C1

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической, энергетической и других родственных с ними отраслях промышленности для определения эффективной концентрации ингибиторов кристаллизации солей или антискалантов.

Концентрация солей жесткости (труднорастворимых солей) в воде многих природных водоемов и артезианских скважин близка к равновесному значению или превышает его. Это вызывает кристаллизацию солей, приводящую к солеотложению на внутренней поверхности трубопроводов, коммуникаций, мембран, теплообменного, технологического оборудования, а также связанные с этим проблемы технологического и экономического характера. Технология водоподготовки, направленная на подавление образования осадка, заключается в дозировании к воде антискалантов, действующими веществами которых являются органофосфонаты, ПАВы, полимеры.

Они адсорбируются на поверхности зародышей образующегося осадка, замедляют их рост и удерживают в растворе во взвешенном состоянии при концентрациях выше равновесного значения. Антискаланты имеют низкую адгезию к металлическим поверхностям и легко уносятся потоком жидкости. Некоторые ингибиторы слабо препятствуют кристаллизации солей, но при этом видоизменяют форму кристаллов и препятствуют их дальнейшему росту. Чаще всего в качестве ингибиторов используют соли фосфоновых кислот.

Известен способ аналитического определения содержания ионов Са2+, Mg2+, Fe2+ и т.д. труднорастворимых солей, таких как карбонат кальция и магния, сульфаты кальция и магния и т.д. в водных растворах (А.П. Крешков. Аналитическая химия. Т. 2. - М.: Химия. 1989 г.), по изменению которого можно судить о наличии или отсутствии кристаллизации определяемой соли.

Недостатком способа является длительность выполнения анализа, влияние мешающих ионов на точность определения, необходимость разделения суспензий центрифугированием для повышения точности анализа, использование множества реактивов.

Известен способ оценки размеров седиментационно устойчивых частиц в гелях (Инструкция по применению «Nanotrac ULTRA»), заключающийся в получении диаграммы распределения частиц по размерам в диапазоне 1,0 нм-6,5 мкм.

Недостатком способа является возможность использования прибора для получения гистограммы распределения частиц по размерам только в плотных средах, например, гелях, где седиментация исключается.

Известен способ (RU 2576053) обработки воды для ингибирования образования отложений, содержащих барий, который включает добавление порогового количества ингибитора образования отложений, содержащего аминокислоту, модифицированную алкилфосфоновой кислотой.

Недостатком способа является отсутствие методики, позволяющей определять упомянутое авторами пороговое значение.

Известен способ (RU 2564809) подавления образования накипи в мембранных системах, в котором предложены композиции, содержащие 5-40 мас. % сополимера акриловой кислоты - 2акриламидо-2-метилпропансульфоновой кислоты и 5-40 мас. % полималеиновой кислоты, включающий добавление эффективного количества указанных композиций, которые могут дополнительно содержать эффективное количество одного или нескольких флуорофоров.

Недостатком способа является отсутствие методики, позволяющей определять эффективное количество реагентов.

Известен способ ингибирования (RU 2508426) образования, осаждения и налипания отложений кальциевых солей на металлические и другие поверхности в оборудовании, резервуарах и/или трубопроводе установки для способа варки целлюлозы путем добавления эффективного количества ингибирующей отложения композиции к щелочной водной смеси в котле для способа варки целлюлозы. При этом композиция состоит из по меньшей мере одного фосфонатного компонента (I) и по меньшей мере одного компонента (II), состоящего из по меньшей мере одного карбоксилированного фруктанового соединения. Также изобретение относится к вариантам способа ингибирования образования отложений кальциевых солей в водной системе в выбранном щелочном способе варки целлюлозы, также способу производства бумажной массы и непосредственно композиции для ингибирования образования отложений кальциевых солей в водной системе в щелочном способе варки целлюлозы.

Несмотря на то что в указанном патенте вводится понятие эффективного количества добавляемого ингибитора, способ определения этого количества не описывается.

Настоящее изобретение направлено на определение эффективной концентрации антискаланта для подавления кристаллизации солей в конкретных технических водных растворах и повышение экологической безопасности за счет увеличения точности контроля качества процесса водоподготовки.

Технический результат достигается тем, что предложен способ определения эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей в воде, заключающийся в том, что готовят серию растворов конкретной технической воды с антискалантом концентрациями от 0,5 до 20,0 мг/л и при температуре, отвечающей технологическим параметрам работы оборудования, в котором используется техническая вода, затем для свежеприготовленных растворов по экспериментальным данным, полученным методом динамического светорассеяния, строят кинетическую кривую интенсивности роста частиц труднорастворимых солей, по которой определяют значение индукционного периода зародышеобразования, а по графику зависимости значения индукционного периода от концентрации антискаланта τинд=f(Сант) определяют его эффективную концентрацию, принимая время индукционного периода за время пребывания технической воды в технологическом оборудовании с момента введения антискаланта.

Технический результат достигается также тем, что в качестве антискаланта используют соли фосфоновых кислот.

Важно, что серию растворов технической воды с антискалантом готовят с шагом 0,5÷5 мг/л.

Выбранный диапазон концентраций антискаланта объясняется тем, что при концентрации антискаланта ниже 0,5 мг/л значения индукционного периода зародышеобразования относительно малы для практического использования в технологическом оборудовании, а при концентрации свыше 20,0 мг/л не наблюдается заметного увеличения указанного индукционного периода. Кроме того, повышенные концентрации нецелесообразны по экономическим и экологическим причинам.

Применение метода динамического светорассеяния обусловлено тем, что ранее (Кинетика кристаллизации карбоната кальция в условиях стехиометрического соотношения компонентов, ЖФХ, т. 90, №12, 2016. С. 1779-1784), применительно к системе дистиллированная вода - карбонат кальция, была показана возможность фиксирования начала роста частиц солей жесткости в свежеприготовленных водных растворах.

Выбранный шаг концентраций антискаланта при приготовлении серии растворов определяется регламентируемым временем пребывания технической воды в технологическом оборудовании чем меньше время, тем меньше шаг.

Сущность изобретения заключается в том, что использование метода динамического светорассеяния позволяет точно установить значение индукционного периода в процессе кристаллизации труднорастворимых солей в технических водных растворах и, следовательно, определить эффективную концентрацию антискаланта, при которой время индукции соответствует времени пребывания технической воды в технологическом цикле.

Заявляемое изобретение поясняется следующими прилагаемыми иллюстрациями.

Фиг. 1. Кинетические кривые образования и роста частиц солей жесткости в технической воде, содержащей 0,019 мас. % CaCO3, 0,0075 мас. % CaSO4, 0,0067 MgCO3 с содержанием антискаланта а) 0,5 мг/л, б) 2,0 мг/л, в) 3,5 мг/л, г) 6,5 мг/л по примеру 1.

Фиг. 2. Определение эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей по примеру 1

Фиг. 3. Определение эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей по примеру 2.

Фиг. 4. Определение эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей по примеру 3.

Ниже приведены примеры реализации заявляемого способа. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1

Готовили серию растворов технической воды для блока мембранного разделения, соответствующих солевому составу воды, содержащей 0,019 мас. % CaCO3, 0,0075 мас. % CaSO4, 0,0067 MgCO3 и антискалант, содержащий соли нитрилотриметилфосфоновой кислоты в деминерализованной воде, с концентрациями 0,5 мг/л - 3,5 мг/л с шагом 0,5 мг/л и при температуре 25°C, затем для свежеприготовленных растворов по экспериментальным данным, полученным методами динамического светорассеяния и оптической микроскопии, строили кинетические кривые образования и роста частиц труднорастворимых солей, по которым определяли значение индукционного периода зародышеобразования. Данные сведены в Таблицу 1: «Значения индукционного периода от содержания антискаланта» и проиллюстрированы на Фиг 1.

По данным таблицы строили график зависимости значения индукционного периода от концентрации антискаланта τинд=f(Сант), из которого определяли его эффективную концентрацию, принимая время индукционного периода за время пребывания технической воды в технологическом оборудовании с момента введения антискаланта, равное 0,8 мин (Фиг. 2). Эффективная концентрация антискаланта составила 2,7 мг/л.

Пример 2

Готовили серию растворов технической воды для теплообменного аппарата, соответствующих солевому составу воды, содержащей 0,019 мас. % CaCO3, 0,0075 мас. % CaSO4, 0,0067 MgCO3 и антискалант, содержащий соли нитрилотриметилфосфоновой кислоты в деминерализованной воде, с концентрациями 0,5 мг/л - 8,0 мг/л с шагом 2 мг/л и при температуре 60°C, затем для свежеприготовленных растворов по экспериментальным данным, полученным методами динамического светорассеяния и оптической микроскопии, строили кинетические кривые образования и роста частиц труднорастворимых солей, по которым определяли значение индукционного периода зародышеобразования. Данные сведены в Таблицу 2: «Значения индукционного периода от содержания антискаланта».

По данным таблицы строили график зависимости значения индукционного периода от концентрации антискаланта τинд=f(Сант), из которого определяли его эффективную концентрацию, принимая время индукционного периода за время пребывания технической воды в технологическом оборудовании с момента введения антискаланта, равное 8,2 мин (Фиг. 3). Эффективная концентрация антискаланта составила 3,3 мг/л.

Пример 3

Готовили серию растворов технической воды для теплообменного аппарата, соответствующих солевому составу воды, содержащей 0,019 мас. % CaCO3, 0,0075 мас. % CaSO4, 0,0067 MgCO3 и антискалант, содержащий соли 1-гидроксиэтилиденди-фосфоновой и полиаминометиленфосфоновой кислот, с концентрациями 0,5 мг/л - 20,0 мг/л с шагом 5 мг/л и при температуре 80°C, затем для свежеприготовленных растворов по экспериментальным данным, полученным методами динамического светорассеяния и оптической микроскопии, строили кинетические кривые образования и роста частиц труднорастворимых солей, по которым определяли значение индукционного периода зародышеобразования. Данные сведены в Таблицу 3: «Значения индукционного периода от содержания антискаланта».

По данным таблицы строили график зависимости значения индукционного периода от концентрации антискаланта τинд=f(Сант), из которого определяли его эффективную концентрацию, принимая время индукционного периода за время пребывания технической воды в технологическом оборудовании с момента введения антискаланта, равное 20 мин (Фиг. 4). Эффективная концентрация антискаланта составила 7,9 мг/л.

Настоящее изобретение позволяет определять эффективную концентрацию антискаланта для подавления кристаллизации труднорастворимых солей в конкретных технических водных растворах, минимизировать расход антискаланта и повысить экологическую безопасность используемых растворов.

Похожие патенты RU2648351C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛЕНДИФЕНИЛДИИЗОЦИАНАТА 2020
  • Дашкин Ратмир Ринатович
RU2750198C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ТРУДНОРАСТВОРИМЫХ СОЕДИНЕНИЙ МЕДИ ИЗ АММИАЧНЫХ СИСТЕМ 2022
  • Бродский Владимир Александрович
  • Перфильева Анна Владимировна
  • Яворский Александр Русланович
  • Иншакова Ксения Александровна
RU2793617C1
О-ЗАМЕЩЕННЫЕ 3-ПИРИДИЛКЕТОКСИМЫ, ОБЛАДАЮЩИЕ ФУНГИЦИДНОЙ АКТИВНОСТЬЮ 2015
  • Кузенков Александр Владимирович
  • Захарычев Владимир Владимирович
RU2617413C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКРЕМНИЕВОГО ФЛОКУЛЯНТА-КОАГУЛЯНТА 2015
  • Кручинина Наталия Евгеньевна
  • Кузин Евгений Николаевич
RU2588535C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ГИДРОКСИДА МЕДИ ИЗ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ МЕДНО-АММИАЧНЫЙ КОМПЛЕКС 2022
  • Бродский Владимир Александрович
  • Малькова Юлия Олеговна
  • Перфильева Анна Владимировна
  • Максимов Иван Сергеевич
RU2793614C1
СПОСОБ ОЧИСТКИ РАСТВОРА, ИСПОЛЬЗУЕМОГО ПРИ РАЗДЕЛЕНИИ ТВЕРДОЙ СМЕСИ ХЛОРИДОВ КАЛИЯ И НАТРИЯ, СОДЕРЖАЩЕЙСЯ В ПРИРОДНОЙ РУДЕ 2023
  • Почиталкина Ирина Александровна
  • Тураев Дмитрий Юрьевич
RU2819595C1
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛЕНДИФЕНИЛДИАМИНА С ИСПОЛЬЗОВАНИЕМ ГЕТЕРОГЕННОГО КАТАЛИЗАТОРА 2020
  • Дашкин Ратмир Ринатович
RU2743925C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО ИЗОТОПА КИСЛОРОДА О-18 2023
  • Хорошилов Алексей Владимирович
RU2812219C1
Способ очистки промышленных и сточных вод от соединений хрома 2017
  • Кузин Евгений Николаевич
  • Кручинина Наталия Евгеньевна
RU2658032C1
СПОСОБ ПОЛУЧЕНИЯ ПЕНОБЕТОНА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Логинов Владимир Яковлевич
  • Шептунов Михаил Эдуардович
  • Воротников Вячеслав Иванович
  • Сигаев Николай Викторович
RU2581068C1

Иллюстрации к изобретению RU 2 648 351 C1

Реферат патента 2018 года Способ определения эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей в воде

Изобретение относится к физико-химическим исследованиям и может быть использовано в ряде отраслей промышленности для определения эффективной концентрации ингибиторов кристаллизации солей или антискалантов. Способ заключается в том, что готовят серию растворов конкретной технической воды с антискалантом концентрациями от 0,5 до 20,0 мг/л и при температуре, отвечающей технологическим параметрам оборудования, в котором используется техническая вода, затем для свежеприготовленных растворов по экспериментальным данным, полученным методом динамического светорассеяния, строят кинетическую кривую интенсивности роста частиц труднорастворимых солей, по которой определяют значение индукционного периода зародышеобразования, а по графику зависимости значения индукционного периода от концентрации антискаланта τинд=f(Сант) определяют его эффективную концентрацию, принимая время индукционного периода за время пребывания технической воды в технологическом оборудовании с момента введения антискаланта. Достигается повышение надежности и безопасности анализа, а также – экономия антискаланта. 2 з.п. ф-лы, 4 ил., 3 табл., 3 пр.

Формула изобретения RU 2 648 351 C1

1. Способ определения эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей в воде, заключающийся в том, что готовят серию растворов конкретной технической воды с антискалантом концентрациями от 0,5 до 20,0 мг/л и при температуре, отвечающей технологическим параметрам оборудования, в котором используется техническая вода, затем для свежеприготовленных растворов по экспериментальным данным, полученным методом динамического светорассеяния, строят кинетическую кривую интенсивности роста частиц труднорастворимых солей, по которой определяют значение индукционного периода зародышеобразования, а по графику зависимости значения индукционного периода от концентрации антискаланта τинд=f(Cант) определяют его эффективную концентрацию, принимая время индукционного периода за время пребывания технической воды в технологическом оборудовании с момента введения антискаланта.

2. Способ по п. 1, отличающийся тем, что в качестве антискаланта используют соли фосфоновых кислот.

3. Способ по п. 1, отличающийся тем, что серию растворов технической воды с антискалантом готовят с шагом концентрации 0.5÷5 мг/л.

Документы, цитированные в отчете о поиске Патент 2018 года RU2648351C1

Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Способ количественного определения фосфонатов в воде 1985
  • Рычкова Валентина Ивановна
  • Досаева Татьяна Кузьминична
  • Маклакова Вера Петровна
SU1295306A1
Способ количественного определения фосфонатов в воде 1983
  • Рычкова Валентина Ивановна
  • Маклакова Вера Петровна
SU1122945A1
Способ определения фосфорорганических соединений,содержащих фосфоновые группы 1982
  • Михалев Аркадий Сергеевич
  • Дрикер Борис Нутович
  • Ремпель Семен Израилевич
SU1016734A1
Токарный резец 1924
  • Г. Клопшток
SU2016A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1

RU 2 648 351 C1

Авторы

Почиталкина Ирина Александровна

Кекин Павел Александрович

Кондаков Дмитрий Феликсович

Колесников Владимир Александрович

Даты

2018-03-23Публикация

2017-06-08Подача