Способ изготовления активной массы анода литиевого аккумулятора Российский патент 2018 года по МПК H01M4/04 

Описание патента на изобретение RU2658305C1

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых аккумуляторов с анодами на основе титаната лития. Аноды литиевых аккумуляторов являются композиционными материалами: они представляют собой смесь активной массы, связующего (фторопласт) и электропроводной добавки (сажа, графит). В качестве активной массы анода в настоящее время широко применяется титанат лития (Ярославцев А.Б., Кулова Т.Л., Скундин A.M. // Успехи химии. 2015. Т. 84, №8. С. 826-852).

Известен высокотемпературный способ изготовления титаната лития, который заключается в термообработке смеси диоксида титана с карбонатом лития при температуре 800°C в течение 12 часов (Berbenni V., Milanese С., Bruni G., Marini A. // Z. Naturforsch. 2010. V. 65b. P. 23-26).

Полученное соединение имеет формулу Li4Ti5O12 и циклируется в диапазоне потенциалов 1,5-1.6 В относительно литиевого электрода. Недостатками этого способа являются его длительность, а также низкая электронная проводимость и дисперсность порошков Li4Ti5O12 (размер частиц около 800 нм) и, как следствие, неудовлетворительные разрядно-зарядные характеристики катодов.

Наиболее близким по технической сущности и достигаемым результатам является твердофазный способ изготовления Li4Ti5O12, который заключается в следующем: порошок диоксида титана TiO2 перемешивают с гидрооксидом лития LiOH, механически активируют на планетарных мельницах, а затем отжигают при температуре 800°C в течение 4 часов на воздухе (Косова Н.В., Девяткина Е.Т. // Электрохимия. 2012. Т. 48, №2. С. 351-361). К недостаткам твердофазного способа можно отнести энергоемкость процесса, связанную с механической активацией на планетарных мельницах, что удорожает продукт, невысокую дисперсность порошков Li4Ti5O12 (размер частиц около 500 нм), что сказывается на емкости и ресурсе работы анода на его основе и аккумулятора в целом.

Техническая задача, решаемая изобретением, состоит в повышении технологичности процесса изготовления анода и увеличении его емкости. Технический результат, заключающийся в увеличении дисперсности титаната лития и увеличении коэффициента диффузии лития, достигается тем, что в известном способе изготовления титаната лития, заключающемся в том, что проводят смешение диоксида титана с гидрооксидом лития в сухом виде, механоактивацию и термообработку, согласно изобретению механоактивацию проводят в процессе пластического течения при кручении под давлением 1.65 ГПа и величинах относительной деформации 19-21, а термообработку проводят при температуре 700°C в течение 6 часов в воздушной среде.

На чертеже схематично представлено устройство для осуществления механоактивации, включающее смесь TiO2+LiOH 1, пуансон 2, наковальню Бриджмена 3.

Способ осуществляют следующим образом.

TiO2 и LiOH в соотношении 4:1 насыпают в керамическую чашку. Затем стеклянной палочкой их предварительно слегка перемешивают в сухом виде в течение пятнадцати секунд. Схематически это представлено на чертеже. Полученную массу 1 насыпают на наковальню Бриджмена 3, прижимают сверху пуансоном 2 и помещают под пресс. Затем массу подвергают относительной деформации величиной 19-21 при давлении не менее 1.65 ГПа. В результате получается плоский диск толщиной от 1,5 до 2 мм. Этот диск затем помещается в муфельную печь, где выдерживается при температуре 700°C в течение 6 часов в воздушной атмосфере.

Аппаратура, на которой проводилась механоактивация, позволяет подвергать исследуемые вещества одновременному воздействию одноосного сжатия и сдвиговым напряжениям, величина которых не превышает предела текучести материала при данном давлении. Особенностью аппаратуры данного типа является то, что по мере увеличения давления напряжение, необходимое для поддержания постоянной скорости пластического деформирования, увеличивается. При постоянном давлении напряжение, необходимое для удержания постоянной скорости пластического деформирования, остается постоянным. При данной методике можно развивать в исследуемых материалах при давлении выше пороговых пластические деформации в большом диапазоне без нарушения сплошности образцов. В нашем случае пластическая деформация относится не к единичным частицам, из которых состоит смесь, а ко всему образцу, который представляет собой цилиндр. Для данной схемы воздействия и геометрии образцов необходимо применять представления о деформациях кручения при воздействии скручивающих напряжений на цилиндрическое тело. Указанные деформации можно охарактеризовать отношением длины винтовой линии, в которую при деформировании трансформируется образующая цилиндра, к начальной высоте цилиндра (Жорин В.А., Усиченко В.М., Епиколонян Н.С. // Высокомолекулярные соединения, 1982, Т. 24, №9, с. 1889-1893). Пластическое течение на аппаратуре данного типа реализуется в том случае, когда сила поверхностного трения больше или равна пределу текучести обрабатываемого материала. Такое соотношение для исследуемых смесей возникает при давлениях порядка 1.65 ГПа и относительной деформации 19. При меньших давлениях и относительной деформации сжимающего вещества наковальня и пуансон проскальзывают по поверхности вещества и исходные порошкообразные материалы так и остаются в виде порошка. При давлениях выше 1.65 ГПа порошкообразные материалы компактируются, т.е. составляющие части подвергаются пластическому деформированию. При относительной деформации менее 19 единиц получается недостаточное равномерное перемешивание компонентов, что приводит к снижению дисперсности титаната лития и электрохимических параметров анода на его основе. При относительной деформации более 21 единиц после термообработки полученной смеси образуется фаза титаната лития с размерами частиц более 100 нм, что усложняет процесс диффузии иона лития по твердой фазе в процессе разряда аккумулятора и, соответственно, приводит к снижению разрядной емкости анода. При температуре ниже 700°C не получается фазово-однородный продукт: образуется титанат лития с небольшими количествами примеси TiO2. При температуре выше 700°C образуется титанат лития с небольшими количествами примеси Li2TiO3. Примеси отличаются меньшими коэффициентами диффузии иона лития и, соответственно, повышенными поляризационными потерями. 6 часов достаточно для полного преобразования смеси в нанодисперсную фазу титаната лития: размер частиц 60-70 нм. Таким образом, выход вышеописанных параметров за указанные пределы приводит к снижению эффективности способа.

Реализация указанного способа позволяет увеличить емкость анодов и их ресурс на 15-20%, а также значительно повысить воспроизводимость результатов при массовом производстве. Для осуществления способа необходимы пресс, пуансон, наковальня и муфельная печь.

Пример 1. 0.650 г смеси TiO2 и LiOH в соотношении 4:1 перемешивали в сухом виде в течение пятнадцати секунд в керамической чашке. Полученную смесь подвергали относительной деформации величиной 21 при давлении 1.65 ГПа. После этого полученную массу помещали в муфельную печь, где выдерживали при температуре 700°C в течение 6 часов в воздушной атмосфере. Затем изготавливали анод аккумулятора: 0.495 г анодной массы с содержанием титаната лития (размер частиц 70 нм), сажи и фторопласта в соотношении 85:10:5, соединяли с токоотводом. После сборки аккумулятора Li4Ti5O12-LiCoO2 в типоразмере 2325 его разрядная емкость составила 65 мА⋅ч в диапазоне напряжения 3.5-2.0 В на протяжении 120 циклов.

Пример 2. 0.710 г смеси TiO2 и LiOH в соотношении 4:1 перемешивали в сухом виде в течение пятнадцати секунд в керамической чашке. Полученную смесь подвергали относительной деформации величиной 20 при давлении 1.65 ГПа. После этого полученную массу помещали в муфельную печь, где выдерживали при температуре 700°C в течение 6 часов в воздушной атмосфере. Затем изготавливали анод аккумулятора: 0.530 г анодной массы с содержанием титаната лития (размер частиц 65 нм), сажи и фторопласта в соотношении 85:10:5, соединяли с токоотводом. После сборки аккумулятора Li4Ti5O12-LiCoO2 в типоразмере 2325 его разрядная емкость составила 76 мА⋅ч в диапазоне напряжения 3.5-2.0 В на протяжении 130 циклов.

Пример 3.0.700 г смеси TiO2 и LiOH в соотношении 4:1 перемешивали в сухом виде в течение пятнадцати секунд в керамической чашке. Полученную смесь подвергали относительной деформации величиной 18 при давлении 1.65 ГПа. После этого полученную массу помещали в муфельную печь, где выдерживали при температуре 700°C в течение 6 часов в воздушной атмосфере. Затем изготавливали анод аккумулятора: 0.535 г анодной массы с содержанием титаната лития (размер частиц 60 нм), сажи и фторопласта в соотношении 85:10:5, соединяли с токоотводом. После сборки аккумулятора Li4Ti5O12-LiCoO2 в типоразмере 2325 его разрядная емкость составила 78 мА⋅ч в диапазоне напряжения 3.5-2.0 В на протяжении 140 циклов.

Во всех случаях аккумуляторы удовлетворяли требованиям ГОСТ по емкости, разрядному напряжению и ресурсу.

Похожие патенты RU2658305C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ МАССЫ КАТОДА ЛИТИЕВОГО АККУМУЛЯТОРА 2010
  • Савостьянов Антон Николаевич
  • Смирнов Сергей Сергеевич
  • Жорин Владимир Александрович
  • Смирнова Людмила Николаевна
RU2424600C1
Способ изготовления активной массы катода литиевого аккумулятора 2023
  • Смирнов Сергей Евгеньевич
  • Пуцылов Иван Александрович
  • Зацепин Алексей Александрович
  • Жорин Владимир Александрович
RU2815267C1
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ МАССЫ КАТОДА ЛИТИЕВОГО АККУМУЛЯТОРА 2002
  • Смирнов С.Е.
  • Жорин В.А.
  • Огородников А.А.
RU2230399C2
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ МАССЫ КАТОДА ЛИТИЕВОГО АККУМУЛЯТОРА 2005
  • Жорин Владимир Александрович
  • Смирнов Сергей Сергеевич
RU2329570C2
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ МАССЫ КАТОДА ЛИТИЕВОГО ИСТОЧНИКА ТОКА 2010
  • Смирнов Константин Сергеевич
  • Пуцылов Иван Александрович
  • Жорин Владимир Александрович
  • Смирнова Людмила Николаевна
RU2424599C1
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ МАССЫ КАТОДА ЛИТИЕВОГО АККУМУЛЯТОРА 2020
  • Картушин Александр Георгиевич
  • Жорин Владимир Александрович
  • Пуцылов Иван Александрович
  • Смирнов Сергей Евгеньевич
RU2738800C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ТИТАНАТА ЛИТИЯ 2013
  • Почтарев Александр Николаевич
  • Альвиев Хожбауди Хамзатович
  • Гасанов Ахмедали Амиралы Оглы
  • Пархоменко Юрий Николаевич
  • Солдатенко Владимир Андреевич
RU2528839C1
Способ изготовления активной массы катода литиевого источника тока 2023
  • Смирнов Сергей Евгеньевич
  • Пуцылов Иван Александрович
  • Иванов Павел Дмитриевич
  • Фатеев Сергей Анатольевич
RU2800976C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДА ЛИТИЕВОГО ИСТОЧНИКА ТОКА 2012
  • Смирнов Сергей Евгеньевич
  • Воробьев Иван Сергеевич
  • Егоров Алексей Михайлович
  • Пуцылов Иван Александрович
  • Смирнов Константин Сергеевич
RU2488196C1
АНОДНЫЙ МАТЕРИАЛ ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА НА ОСНОВЕ LiCrTiO СО СТРУКТУРОЙ ШПИНЕЛИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Чуриков Алексей Владимирович
  • Иванищев Александр Викторович
  • Гридина Нелли Александровна
  • Ушаков Арсений Владимирович
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Клюев Владимир Владимирович
RU2558140C1

Иллюстрации к изобретению RU 2 658 305 C1

Реферат патента 2018 года Способ изготовления активной массы анода литиевого аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых аккумуляторов с анодами на основе титаната лития. Проводят смешение диоксида титана с гидрооксидом лития в сухом виде, механоактивацию и термообработку, при этом механоактивацию проводят в процессе пластического течения при кручении под давлением 1.65 ГПа и величинах относительной деформации 19-21, а термообработку при температуре 700°C в течение 6 часов в воздушной среде. Изобретение позволяет повысить технологичность процесса изготовления анода при увеличении его разрядной емкости. 1 ил.

Формула изобретения RU 2 658 305 C1

Способ изготовления активной массы анода литиевого аккумулятора, в котором проводят смешение диоксида титана с гидрооксидом лития в сухом виде, механоактивацию и термообработку, отличающийся тем, что механоактивацию проводят в процессе пластического течения при кручении под давлением 1.65 ГПа и величинах относительной деформации 19-21, а термообработку проводят при температуре 700°С в течение 6 часов в воздушной атмосфере.

Документы, цитированные в отчете о поиске Патент 2018 года RU2658305C1

Н.В
Косова, Е.Т
Девяткина "Синтез наноразмерных материалов для литий-ионных аккумуляторов с применением механической активации", Электрохимия, 2012, т
Приспособление для автоматической односторонней разгрузки железнодорожных платформ 1921
  • Новкунский И.И.
SU48A1
Деревобетонный каток 1916
  • Ветчинкин Н.С.
SU351A1
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ МАССЫ КАТОДА ЛИТИЕВОГО АККУМУЛЯТОРА 2005
  • Жорин Владимир Александрович
  • Смирнов Сергей Сергеевич
RU2329570C2
СПОСОБ ПОЛУЧЕНИЯ ТИТАНАТА ЛИТИЯ 2009
  • Горшков Вадим
  • Волков Олег
  • Такея Канаме
RU2519840C2
US 20130146809 A1, 13.06.2013
US 6706444 B1, 16.03.2004.

RU 2 658 305 C1

Авторы

Смирнов Сергей Евгеньевич

Смирнов Сергей Сергеевич

Жорин Владимир Александрович

Савостьянов Антон Николаевич

Даты

2018-06-20Публикация

2017-06-15Подача