СПОСОБ ВЫДЕЛЕНИЯ СПЕКТРАЛЬНЫХ ОТСЧЕТОВ В МНОГОКАНАЛЬНОЙ ДОПЛЕРОВСКОЙ РЛС Российский патент 2018 года по МПК G01S13/89 

Описание патента на изобретение RU2661913C1

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации [1] и предназначенным для наблюдения за наземными или воздушными объектами. Традиционно в таких РЛС используется один пространственно-измерительный канал первичной обработки принимаемых антенной отраженных сигналов. На выходе тракта первичной обработки в каждом элементе разрешения дальности и доплеровской частоты получается комплексное измерение, амплитуда которого свидетельствует о наличии или отсутствии объекта отражения в пространственном объеме элемента разрешения.

Однако по двум координатам - дальность и доплеровская частоты невозможно определить пространственные координаты объекта. Существуют способы [2, 3] измерения пространственных координат элементов земной поверхности или объектов на поверхности, основанные на использовании нескольких пространственно-измерительных (в дальнейшем - измерительных) каналов первичной обработки по числу пространственно разнесенных приемных элементов антенной системы (АС). Запаздывание или опережение по фазе сигналов, принимаемых в приемных элементах АС, дает информацию о пространственном положении наземных или воздушных объектов.

Рассмотрим в качестве прототипа способ измерения координат элементов земной поверхности (или объектов на поверхности) в бортовой четырехканальной доплеровской РЛС [2]. Способ заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд (измерений) сигналов отражения в элементах разрешения дальности и доплеровской частоты одновременно в четырех измерительных каналах, определении тех частот, на которых амплитуда сигнала превышает порог обнаружения, и последующей обработке совокупности полученных измерений, приводящей к определению пространственных координат отражающих элементов земной поверхности.

К аналогичным действиям приводит и способ [3] формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской РЛС, который также можно рассматривать в качестве прототипа. Отличие [2] и [3] заключается лишь в разных правилах обработки четырех комплексных амплитуд. Определение доплеровских частот в [2] и [3], на которых амплитуда отраженного сигнала превышает порог обнаружения одновременно в четырех каналах, сопровождается выделением спектральных отсчетов (комплексных измерений), соответствующих этим частотам.

Рассмотренные способы-прототипы обладают следующим недостатком. При определении доплеровских частот, на которых амплитуда сигнала превышает порог обнаружения одновременно во всех измерительных каналах, предполагается, что флуктуация доплеровской частоты в каналах отсутствует. В действительности из-за колебаний доплеровской частоты при приеме отраженных сигналов в пространственно разнесенных элементах АС происходит «растекание» частот в соседних элементах разрешения частоты. Это приводит к появлению ложных спектральных отсчетов в доплеровских спектрах и изменению их амплитуды. Возникает проблема выделения в нескольких измерительных каналах спектральных отсчетов, соответствующих одним и тем же отражающим элементам - объектам, в условиях колебания частоты.

Технический результат направлен на устранение указанного недостатка.

Технический результат предлагаемого технического решения достигается применением способа выделения спектральных отсчетов в многоканальной доплеровской радиолокационной станции (РЛС), заключающегося в выделении в доплеровских спектрах измерительных каналов РЛС спектральных отсчетов (комплексных измерений), соответствующих разным объектам отражения, и обработке полученных измерений, приводящей к определению пространственных координат объектов, отличающийся тем, что при выделении спектральных отсчетов в доплеровских спектрах измерительных каналов РЛС, в условиях колебания доплеровской частоты, формируют непересекающиеся группы спектральных отсчетов, взятых по одному из каждого спектра, и выбирают по критерию наименьшей суммы квадратов отклонения параметров групп относительно их среднего значения наиболее правдоподобные группы, соответствующие разным объектам отражения, выделенные отсчеты используют при определении пространственных координат объектов. Алгоритмически способ заключается в следующем.

1. В каждом q-м измерительном канале (, Q - число каналов) амплитуды доплеровских спектров , (N - количество частот в спектре) сравниваются с порогом р обнаружения полезного сигнала. Если , то формируется k-й элемент множества спектральных отсчетов в q-м канале Ωq, , (mq≤N, mq - число таких отсчетов). В результате образуются множества Ωq, . Параметры элементов множеств Ωq запоминаются как координаты точек в 3-мерном пространстве: x1(k,q)=jq(k) - доплеровская частота, - амплитуда спектрального отсчета, - его фаза (аргумент комплексного измерения).

2. На первом шаге q=1 рассматривается множество Ω1. Каждый k-й элемент этого множества дает начало ρ-й группы, для нее устанавливаются начальные значения показателя правдоподобия и оценок координат центра ρ-й группы:

I(ρ,1)=0, , .

Номера k-x элементов запоминаются в массиве K(ρ, 1)=р, .

3. Для последующих множеств Ωq (q=2, 3, …, Q) выполняются следующие операции.

3.1. Каждой ρ-й группе , полученной на предыдущем (q-1)-м шаге, ставятся в соответствие k-е элементы множества Ωq . Выбору подлежат лишь те элементы, частота которых x1 (k,q)=jq(k) удовлетворяет условию:

,

то есть попадает в доверительный интервал ρ-й группы, сформированной на предыдущем шаге. Интервал строится относительно экстраполированного значения частоты ρ-й группы на q-й шаг . Величина отклонения Δj выбирается с учетом возможных колебаний частоты (например: Δj=1 или 2).

Для таких k-x элементов вычисляется показатель правдоподобия, имеющий смысл суммы квадратов отклонений L-x координат точек относительно их среднего значения, взятых с определенными весами μLL>0), и вычисляемый по рекуррентной формуле

.

Веса μLL>0) выбираются эмпирически.

3.2. Показатель Ik сравнивается с порогом αq, который выбирается с учетом статистических свойств величины Ik. Если Ik≤αq, то k-й элемент множества Ωq присоединяется к ρ-й группе и она получает свое продолжение с новым порядковым номером g на q-м шаге (g=1, 2, …). Для g-й группы запоминается показатель качества: I(g,q)=Ik, уточняются оценки средних значений L-x координат по рекуррентной формуле

, ,

и запоминается номер присоединенного элемента: K(g,q)=k.

3.3. Если к ρ-й группе, полученной на предыдущем (q-1)-м шаге, не присоединен ни один из элементов множества Ωq , то эта группа считается неперспективной и не получает дальнейшего продолжения.

3.4. После выполнения операций п.п. 3.1-3.3 формируется nq наиболее перспективных групп с оценками параметров , , , показателями правдоподобия I(g,q) и номерами K(g,q) присоединенных к g-м группам элементов множества Ωq.

4. Для последнего номера q=Q после выполнения операций раздела 3 выделяются n наилучших непересекающихся ρ-x групп с наименьшими показателями I(gp,Q), . Выделение групп производится последовательно в порядке увеличения показателей I(g1,Q),I(g2,Q), … где g1 - номер первой выделенной группы, g2 - номер второй и т.д. После выделения ρ-й группы (ρ=1, 2, …) из оставшихся групп исключаются те, номера элементов которых совпадают с номерами элементов выделенной группы. Для этого используется массив запомненных номеров K(g,q), , . Допускается минимально количество π одинаковых элементов групп (например, π=1).

Операции п. 4 заканчиваются после выделения очередной ρ-й группы по признаку отсутствия оставшихся групп, при этом оценкой n является последний номер ρ: n=ρ.

5. Спектральные отсчеты , , , kρ=K(gρ,q), выделенных элементов множеств Ω1, Ω2, …, ΩQ передаются на алгоритмы оценивания координат.

Замечание. Возможно упрощение. Для этого вводятся ограничения:

а) к ρ-й группе, сформированной на (q-1)-м шаге, можно отнести только один k-й элемент множества Ωq, доставляющий показателю Ik наименьшее значение;

б) выбранный k-й элемент не может быть привязан к другой g-й группе.

Это исключает возможность размножения вариантов, но нарушает оптимальность выбора на последнем Q-м шаге в смысле критерия правдоподобия. Также отпадает необходимость проверки пересечений выбранных групп, так как каждый элемент множества Ωq в этом случае не может войти в состав более чем одной группы.

Выводы. Предложенный способ позволяет выделять спектральные отсчеты в доплеровских спектрах, полученных в нескольких измерительных каналах, в условиях колебания доплеровской частоты. Выделенные спектральные отсчеты, отнесенные к разным объектам отражения, подвергаются операциям определения пространственных координат объектов. Способ может быть использован в существующих доплеровских системах наблюдения за наземными и воздушными объектами.

Источники информации

1. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли: учеб. пособие для вузов / под ред. Г.С. Кондратенкова. М.: Радиотехника, 2005, 368 с.

2. Патент RU 2534224 C1. Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской РЛС.

3. Патент RU 2572357. Способ формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской РЛС.

Похожие патенты RU2661913C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ ТРЕХМЕРНОГО ИЗОБРАЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ В БОРТОВОЙ ЧЕТЫРЕХКАНАЛЬНОЙ ДОПЛЕРОВСКОЙ РЛС 2014
  • Клочко Владимир Константинович
RU2572357C1
СПОСОБ ПОЛУЧЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ОБЪЕКТА В БОЛЬШОМ ДИАПАЗОНЕ ИЗМЕНЕНИЯ ВЕЛИЧИН ЭФФЕКТИВНЫХ ПЛОЩАДЕЙ РАССЕИВАНИЯ ЛОКАЛЬНЫХ ЦЕНТРОВ ПРИ МНОГОЧАСТОТНОМ ИМПУЛЬСНОМ ЗОНДИРОВАНИИ 2008
  • Блиновский Александр Михайлович
  • Крюков Сергей Викторович
RU2372627C1
СПОСОБ ИЗМЕРЕНИЯ УГЛОВЫХ КООРДИНАТ ДВИЖУЩИХСЯ ОБЪЕКТОВ ДОПЛЕРОВСКОЙ СТАНЦИЕЙ 2022
  • Клочко Владимир Константинович
  • Кузнецов Вячеслав Павлович
  • Ву Ба Хунг
RU2792196C1
СПОСОБ ФОРМИРОВАНИЯ ТРЕХМЕРНОГО ИЗОБРАЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ В БОРТОВОЙ ДОПЛЕРОВСКОЙ РЛС С ЛИНЕЙНОЙ АНТЕННОЙ РЕШЕТКОЙ 2014
  • Клочко Владимир Константинович
RU2569843C1
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ВРАЩАЮЩЕГОСЯ ПО КУРСУ, ТАНГАЖУ И КРЕНУ ОБЪЕКТА ПРИ МНОГОЧАСТОТНОМ ИМПУЛЬСНОМ ЗОНДИРОВАНИИ 2006
  • Блиновский Александр Михайлович
  • Мезенцев Павел Викторович
  • Половинкин Леонид Петрович
  • Половинкин Алексей Леонидович
RU2327190C1
СПОСОБ ЧАСТОТНО-ВРЕМЕННОЙ ОБРАБОТКИ СИГНАЛОВ 2023
  • Клочко Владимир Константинович
  • Ву Ба Хунг
RU2809744C1
СПОСОБ ИЗМЕРЕНИЯ КООРДИНАТ ЭЛЕМЕНТОВ ЗЕМНОЙ ПОВЕРХНОСТИ В БОРТОВОЙ ЧЕТЫРЕХКАНАЛЬНОЙ ДОПЛЕРОВСКОЙ РЛС 2013
  • Клочко Владимир Константинович
  • Нгуен Чунг Тхык
RU2534224C1
СПОСОБ ИЗМЕРЕНИЯ УГЛОВЫХ КООРДИНАТ НЕСКОЛЬКИХ ОБЪЕКТОВ В МНОГОКАНАЛЬНЫХ ДОПЛЕРОВСКИХ РЛС 2008
RU2373551C1
СПОСОБ ИЗВЛЕЧЕНИЯ ИЗ ДОПЛЕРОВСКИХ ПОРТРЕТОВ ВОЗДУШНЫХ ОБЪЕКТОВ ПРИЗНАКОВ ИДЕНТИФИКАЦИИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА СВЕРХРАЗРЕШЕНИЯ 2015
  • Романенко Алексей Владимирович
  • Митрофанов Дмитрий Геннадьевич
  • Григорян Даниел Сергеевич
  • Климов Сергей Анатольевич
  • Бортовик Виталий Валерьевич
  • Силаев Николай Владимирович
  • Перехожев Валентин Александрович
  • Торбин Сергей Александрович
RU2589737C1
СПОСОБ ОБРАБОТКИ СИГНАЛОВ ВО ВРЕМЕННОЙ И ЧАСТОТНОЙ ОБЛАСТЯХ 2023
  • Клочко Владимир Константинович
  • Ву Ба Хунг
RU2799480C1

Реферат патента 2018 года СПОСОБ ВЫДЕЛЕНИЯ СПЕКТРАЛЬНЫХ ОТСЧЕТОВ В МНОГОКАНАЛЬНОЙ ДОПЛЕРОВСКОЙ РЛС

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение спектральных отсчетов в доплеровских спектрах измерительных каналов в условиях колебания частоты. Указанный результат достигается за счет того, что в доплеровских спектрах измерительных каналов выделяются по определенному правилу наиболее правдоподобные непересекающиеся группы спектральных отсчетов, соответствующие объектам. Комплексные измерения каждой выделенной группы используются далее для определения пространственных координат этих объектов.

Формула изобретения RU 2 661 913 C1

Способ выделения спектральных отсчетов в многоканальной доплеровской радиолокационной станции (РЛС), заключающийся в выделении в доплеровских спектрах измерительных каналов РЛС спектральных отсчетов (комплексных измерений), соответствующих разным объектам отражения, и обработке полученных измерений, приводящей к определению пространственных координат объектов, отличающийся тем, что при выделении спектральных отсчетов в доплеровских спектрах измерительных каналов РЛС, в условиях колебания доплеровской частоты, формируют непересекающиеся группы спектральных отсчетов, взятых по одному из каждого спектра, и выбирают по критерию наименьшей суммы квадратов отклонения параметров групп относительно их среднего значения наиболее правдоподобные группы, соответствующие разным объектам отражения, выделенные отсчеты используют при определении пространственных координат объектов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661913C1

СПОСОБ ФОРМИРОВАНИЯ ТРЕХМЕРНОГО ИЗОБРАЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ В БОРТОВОЙ ЧЕТЫРЕХКАНАЛЬНОЙ ДОПЛЕРОВСКОЙ РЛС 2014
  • Клочко Владимир Константинович
RU2572357C1
СПОСОБ ИЗМЕРЕНИЯ УГЛОВЫХ КООРДИНАТ НЕСКОЛЬКИХ ОБЪЕКТОВ В МНОГОКАНАЛЬНЫХ ДОПЛЕРОВСКИХ РЛС 2008
RU2373551C1
УСТРОЙСТВО СЕЛЕКЦИИ МАЛОВЫСОТНЫХ МАЛОСКОРОСТНЫХ ВОЗДУШНЫХ ЦЕЛЕЙ И ДВИЖУЩИХСЯ НАЗЕМНЫХ ЦЕЛЕЙ В КОГЕРЕНТНОЙ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИИ 2005
  • Панин Борис Анатольевич
  • Лапидовская Татьяна Михайловна
RU2298809C9
КОРОТКОИМПУЛЬСНЫЙ РАДИОЛОКАТОР С ЭЛЕКТРОННЫМ СКАНИРОВАНИЕМ В ДВУХ ПЛОСКОСТЯХ И С ВЫСОКОТОЧНЫМ ИЗМЕРЕНИЕМ КООРДИНАТ И СКОРОСТИ ОБЪЕКТОВ 2014
  • Клименко Александр Игоревич
RU2546999C1
JP 4712826 B2, 29.06.2011
СПОСОБ ОБРАБОТКИ КОЖИ РУК ХИРУРГА И МЕДПЕРСОНАЛА 1992
  • Петросян Эдуард Арутюнович
RU2021820C1
US 6229475 B1, 08.05.2001
Авторулевой 1981
  • Юха Самуил Давидович
SU1031847A1

RU 2 661 913 C1

Авторы

Клочко Владимир Константинович

Даты

2018-07-23Публикация

2017-03-10Подача