Устройство и способ управления потоком крови в аппаратах сердечно-легочного обхода Российский патент 2018 года по МПК A61M1/10 

Описание патента на изобретение RU2665180C1

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к медицинской технике, а именно к аппаратам искусственного кровообращения (АИК) и системам экстракорпоральной мембранной оксигенации (ЭКМО), может быть использовано в аппаратах сердечно-легочного обхода при проведении искусственного или вспомогательного кровообращения, в том числе при проведении кардиохирургических вмешательств, а также до и после них.

УРОВЕНЬ ТЕХНИКИ

Многие факторы влияют на результаты операций с применением АИК и ЭКМО, особенно у педиатрических пациентов с врожденными пороками сердца. Преимущество пульсирующей перфузии по сравнению с непульсирующей является одним из таких факторов, который по-прежнему широко обсуждается среди исследователей, перфузиологов и хирургов (Agati S, Ciccarello G, Salvo D, et al. Pulsatile ECMO as bridge to recovery and cardiac transplantation in pediatric population: A comparative study. J Heart Lung Transplant 2007; 26: 8).

В частности преимущества пульсирующей перфузии у педиатрических пациентов при ЭКМО и АИК заключаются в увеличении кровотока жизненно важных органов, улучшении восстановления жизненно важных органов, что способствуют уменьшению постоперационных осложнений (Ungar A. Pulsatile Versus Nonpulsatile cardiopulmonary bypass procedures in neonates and infants: From bench to clinical practice. ASAIO 2005; 51: 6-10).

В настоящее время в литературе приводятся достаточно позитивные данные, полученные в результате пульсирующей перфузии у детей и взрослых, а также в экспериментальных моделях на животных.

Для сравнительной оценки непульсирующего и пульсирующего потока с точки зрения сравнения физиологических эффектов данных режимов в 1966 году Шепард и др. (Shepard RB, Simpson DC, Sharp JF: Energy equivalent pressure. Arch Surg 1966; 93: 730-74) предложили индекс энергетического эквивалентного давления (ЭЭД), который точно оценивает гемодинамическую энергию, которая определяется как соотношение между гемодинамической работой давления и объемом крови, перекачиваемой за тот же период времени;

ЭЭД=(ƒpdt)/(ƒdt),

где ƒpdt - гемодинамическая работа по давлению,

ƒdt - объем перкачиваемой крови.

При этом было показано, что пульсирующий поток, который создает более высокий уровень гемодинамической энергии, может лучше поддерживать микроциркуляцию и клеточный метаболизм, способствуя восстановлению жизненно важных органов после использования АИК и ЭКМО (Undar A, Masai Т, Beyer ЕА, Goddard-Finegold J, et al: Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass Artif Org 2002; 26: 919-923).

Кроме того, считается, что пульсирующая перфузии положительно влияет на процесс восстановления, уменьшая синдром системной воспалительной реакции, и снижает продолжительность госпитализации (Alkan Т, Akc evin A, Undar A, et al: Benefits of pulsatile perfusion on vital organ recovery during and after pediatric open-heart surgery. ASAIO J, 2005; 3, 651-654).

Были предложены различные способы имитации в АИК и ЭКМО естественного пульсирующего кровотока, но ни один из них до сих пор не был признан удовлетворительным. Тем не менее, было проведено достаточно много исследований в области разработок пульсирующих систем для сердечно-легочного обхода.

Известно устройство (US 7850594 В2), которое содержит роторный насос (РН) с приводом, обеспечивающим пульсирующий режим работы насоса за счет периодического изменения с помощью контроллера скорости вращения рабочего колеса. Однако для реализации данного режима в АИК, в которых используются, главным образом, роликовые насосы, из-за инерции рабочего колеса на выходе формируется синусоидальный сигнал, отличающийся от естественной пульсации.

Описаны и другие системы управления РН с модуляцией скорости вращения рабочего колеса (US 9579435 В2, US 9345824 В2), обладающие теми же недостатками при использовании роликовых насосов.

Самый простой способ обеспечить импульсный поток - периодически пережимать и открывать входную или выходную линию артериального насоса аппарата АИК или ЭКМО.

Известны устройства (US 7238165 В2, US 8317499 В2, US 4492531 А), в которых для создания пульсирующего потока установлен клапан с приводом периодически частично или полностью пережимающий выходную артериальную или входную венозную магистраль. Недостатком указанных устройств, особенно при использовании роликовых насосов, является создание высокого давления при пережатии выходной магистрали и высокого разрежения при пережатии входной магистрали, за счет которых создаются условия травмы крови, а в некоторых случаях условия, способные вызывать кавитацию, которая потенциально высвобождает пузырьки газа в кровоток.

В качестве прототипа нами выбрано устройство US 6547753 В1, в котором пульсирующий кровоток в АИК создается за счет эластичной камеры (баллона), установленной в артериальной линии с программируемой ее компрессией для модулирования сердечного ритма.

Недостатком описанных выше устройств, включая прототип, является создание высокого давления при пережатии выходной магистрали и высокого разрежения при пережатии входной магистрали, за счет которых создаются условия травмы крови, периодическое изменение скорости вращения рабочего колеса насоса, синхронизированное с частотой сердечного цикла, может также привести к травме крови. Кроме того, недостатком прототипа является дополнительный объем крови, необходимый для заполнения пульсирующего баллона, увеличивающий общий объем заполнения кровью всего АИК. В конструкциях современных систем минимизация объема заполнения является одной из важных характеристик аппаратов сердечно-легочного обхода.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Предложено устройство управления потоком крови в аппарате сердечно-легочного обхода, включающее канал регулируемой рециркуляции крови (КР) или шунт с возможностью параллельного подключения к входной и выходной магистралям РН (или насоса непульсирующего потока (ННП)) с встроенным в него клапаном. Последний связан с блоком управления клапаном, обеспечивающим пульсацию с заданной частотой и скважностью потока крови, поступающего через оксигенатор в артериальную линию системы сердечно-легочного обхода путем частичного или полного перекрытия и открытия просвета КР.

В качестве аппарата сердечно-легочного обхода может быть использована система (аппарат) ЭКМО, в которой блок управления клапаном подключен к блоку кардиосинхронизации и выделения зубца R ЭКГ. Последний выполнен с возможностью регулирования потока крови с частичным или полным перекрытием и открытием просвета КР в соответствии с фазами сердечного цикла в режиме контрпульсации с сердцем пациента. При этом клапан в диастолическую фазу частично или полностью перекрывает КР, а в систолическую фазу - частично или полностью открывает КР.

Может быть использован клапан с электромеханическим приводом (электромеханический клапан).

КР может быть подключен к входной и выходной магистралям насоса через тройники.

КР может быть выполнен в виде эластичной трубки или сосудистого протеза.

Предложен также способ управления потоком крови в аппарате сердечно-легочного обхода, в котором устройство подключают параллельно входной и выходной магистралям РН аппарата сердечно-легочного обхода, соединенного с блоком управления насосом, обеспечивающим поддержание заданной скорости вращения рабочего колеса насоса постоянной, после чего подключают полученную систему по схеме «венозная линия - оксигенатор».

Технический результат, достигаемый при осуществлении предлагаемой группы изобретений, заключается в:

- создании физиологического пульсирующего потока в аппаратах сердечно-легочного обхода, например АИК или система ЭКМО, при постоянной заданной скорости вращения рабочего колеса насоса и обеспечении тем самым условий, минимизирующих травму форменных элементов крови и кавитацию с образованием опасных для организма пузырьков газа;

- универсальности предлагаемых устройства и способа, в которых в качестве базового РН насоса для АИК и ЭКМО может быть использован насос любой конструкции.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Существо изобретения поясняется на чертежах, где

на фиг. 1 показана схема генерации пульсирующего потока в АИК и аппарате ЭКМО с применением РН (ННП) и КР (шунта) с встроенным клапаном, связанным с блоком управления, обеспечивающего заданную частоту и скважность управляющих импульсов;

на фиг. 2 показана схема генерации пульсирующего потока в системах ЭКМО с применением РН (ННП) и КР (шунта) с встроенным клапаном, связанным с блоком управления клапаном, обеспечивающим заданную частоту и скважность управляющих импульсов и блоком кардиосинхронизации, обеспечивающий режим контрпульсации;

на фиг. 3 показана диаграмма давлений и расходов, полученная на гидродинамическом стенде, при моделировании с помощью заявленного устройства пульсирующего режима работы.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Устройство содержит РН 1, при этом выход и вход насоса параллельно соединены с управляемым КР 2 в виде трубки определенного сечения с установленным на ней клапаном 3, соединенными с блоком управления 4, обеспечивающим заданную частоту и скважность пульсаций, соответствующих сердечному циклу. Управляемый КР или шунт 2 подсоединен к РН 1 с помощью двух тройников, вход первого тройника подключен через систему трубок к венозной линии аппарата сердечно-легочного обхода, а вход второго тройника через систему трубок подключен к артериальной линии аппарата.

В другом варианте в системе ЭКМО блок управления клапаном связан с кардиосинхронизатом 5, подключенным к блоку выделения R- зубца ЭКГ.

Работа предлагаемого устройства и способ управления потоком крови роторного насоса могут быть представлены следующим образом.

В первом варианте подключения системы РН 1 - КР 2 в системе АИК по схеме «венозный резервуар-артериалтная линия» за счет блока управления 4 клапаном 3 с заданными частотой и скважностью, соответствующих сердечному ритму, клапан 3 частично или полностью перекрывает КР 2, увеличивая или уменьшая поток крови на выходе системы.

Во втором варианте подключения РН 1 - КР 2 в системе ЭКМО по схеме «венозная линия - оксигенатор 6», за счет блока управления 4 клапаном 3 с заданными частотой и скважностью, соответствующими сердечному ритму, клапан 3 частично или полностью перекрывает КР 2, увеличивая или уменьшая поток крови на выходе системы.

В третьем варианте подключения в системе ЭКМО РН 1 - КР 2 по схеме «венозная линия - оксигенатор 6», за счет блока управления 4 клапаном 3, подключенного к блоку кардиосинхронизации 5, при этом в фазе диастолы клапан 3 частично или полностью перекрывает шунт 2, увеличивая поток крови на выходе системы; в фазе систолы клапан 3 и частично или полностью открывает КР 2, уменьшая поток крови в артерию, таким образом реализуя режим контрпульсации. В систолическую фазу клапан частично или полностью открывает канал рециркуляции, уменьшая давление в артериальной линии, таким образом снижая постнагрузку или работу левого желудочка сердца.

На выходе системы РН 1- КР 2, т.е. в артериальной линии, формируются близкие к физиологическим пульсация и давление без изменения скорости вращения рабочего колеса РН1. Данный режим способствует минимизации травмы форменных элементов крови по сравнению с заявленными ранее устройствами и устранению режима разрежения на входе РН1 с возможной кавитацией крови и появлением газовых пузырьков потенциально опасных для мозгового кровообращения.

Таким образом, предложенная система, используемая для управления потоком крови в аппаратах АИК и ЭКМО, включает РН 1 с блоком управления насосом 4, обеспечивающим заданную скорость вращения рабочего колеса насоса, и КР 2. Последний подключен параллельно входной и выходной магистралям РН1 и снабжен клапаном 3, который подключен к блоку управления клапаном 4.

Предлагаемое устройство выполнено с возможностью регулирования потока крови через КР с частичным или полным перекрытием и открытием просвета, создавая условия регулируемого пульсового потока в аппаратах АИК и ЭКМО для модуляции заданного сердечного ритма.

В случаях использования устройства в аппаратах ЭКМО может быть установлен дополнительно блок кардиосинхронизации 5 и связанный с блоком управления клапаном 4. В этом случае блок управления клапаном 4 может работать с заданной задержкой относительно зубца R-ЭКГ, реализуя режим контрпульсации, который за счет повышения давления крови в артерии может способствовать увеличению коронарного кровотока.

Приводим данные, полученные на гидродинамическом стенде, подтверждающие возможность реализации заявленного назначения и достижения указанного технического результата.

Полученный эффект работы системы РН 1 - КР 2 с клапаном 3 и системой управления клапаном 3 показан на диаграмме давлений и расходов на фиг. 3. В данной работе на гидродинамическом стенде в качестве РК использовался насос Биопамп ВР-80 (Medtronic, США) с подключением КР с пневматическим клапаном 3, управляемым от системы привода искусственного сердца Синус-ИС.

Как видно из диаграммы, амплитуда пульсового давления в аортальном резервуаре при работе системы РН 1 - КР 2 находится в физиологических пределах (79/50 мм рт.ст) при среднем расходе жидкости 1,9 л/мин.

Кривая потока жидкости при этом также имеет выраженную пульсацию, что может позитивно сказаться при использовании системы у пациентов как при проведении операций на открытом сердце, так и при использовании при подключении ЭКМО в условиях терминальной сердечной недостаточности.

Для специалистов в области кардиологии должно быть очевидно, что в настоящее изобретение могут быть внесены различные модификации и изменения, не отступая от сущности или объема формулы изобретения, которые не нашли отражения в приведенном примере осуществления изобретения.

Похожие патенты RU2665180C1

название год авторы номер документа
Устройство управления потоком крови в аппаратах сердечно-легочного обхода 2020
  • Иткин Георгий Пинкусович
  • Кулешов Аркадий Павлович
  • Бучнев Александр Сергеевич
  • Дробышев Александр Александрович
  • Носов Михаил Сергеевич
RU2732312C1
Устройство и способ управления потоком крови роторных насосов 2018
  • Иткин Георгий Пинкусович
  • Готье Сергей Владимирович
RU2665178C1
Искусственное сердце 2018
  • Готье Сергей Владимирович
  • Иткин Георгий Пинкусович
RU2665179C1
Устройство и способ управления потоком крови роторных насосов 2020
  • Иткин Георгий Пинкусович
  • Кулешов Аркадий Павлович
  • Носов Михаил Сергеевич
  • Бучнев Александр Сергеевич
  • Дробышев Александр Александрович
RU2725083C1
Устройство и способ бивентрикулярного обхода сердца 2020
  • Иткин Георгий Пинкусович
  • Дробышев Александр Александрович
  • Бучнев Александр Сергеевич
  • Кулешов Аркадий Павлович
RU2734142C1
Искусственное сердце 2020
  • Иткин Георгий Пинкусович
  • Кулешов Аркадий Павлович
  • Дробышев Александр Александрович
  • Бучнев Александр Сергеевич
  • Носов Михаил Сергеевич
RU2732084C1
Система и способ селективной билатеральной перфузии головного мозга при реконструктивной операции на дуге аорты, проводимой в условиях искусственного кровообращения 2019
  • Бондаренко Денис Михайлович
  • Акопов Григорий Александрович
  • Афанасьев Андрей Владимирович
  • Готье Сергей Владимирович
RU2734136C1
Способ искусственного кровообращения при реконструктивной операции на дуге аорты 2019
  • Бондаренко Денис Михайлович
  • Афанасьев Андрей Владимирович
  • Акопов Григорий Александрович
  • Готье Сергей Владимирович
  • Сдвигова Анна Генриховна
RU2724871C1
Воздушный сепаратор к системе экстракорпорального кровообращения 2023
  • Кулешов Аркадий Павлович
  • Дробышев Александр Александрович
  • Иткин Георгий Пинкусович
  • Бучнев Александр Сергеевич
  • Есипова Ольга Юрьевна
  • Шохина Елена Геннадьевна
RU2815528C1
Способ канюляции бедренной артерии для проведения вено-артериальной экстракорпоральной мембранной оксигенации 2016
  • Попцов Виталий Николаевич
  • Спирина Екатерина Александровна
RU2632514C1

Иллюстрации к изобретению RU 2 665 180 C1

Реферат патента 2018 года Устройство и способ управления потоком крови в аппаратах сердечно-легочного обхода

Изобретение относится к медицинской технике, а именно к аппаратам искусственного кровообращения и системам экстракорпоральной мембранной оксигенации. Устройство управления потоком крови в аппарате сердечно-легочного обхода включает канал регулируемой рециркуляции крови с возможностью параллельного подключения к роторному насосу с одной стороны к входной части магистрали насоса, а с другой - к выходной части магистрали насоса. Канал регулируемой рециркуляции крови содержит клапан, связанный с блоком управления клапаном, обеспечивающим пульсацию с заданной частотой и скважностью потока крови, поступающего через оксигенатор в артериальную линию системы сердечно-легочного обхода путем частичного или полного перекрытия и открытия просвета канала регулируемой рециркуляции крови. Технический результат состоит в создании физиологичного пульсирующего потока при постоянной скорости вращения рабочего колеса насоса для минимизации травмы крови и кавитации при использовании насосов разных конструкций. 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 665 180 C1

1. Устройство управления потоком крови в аппарате сердечно-легочного обхода, включающее канал регулируемой рециркуляции крови с возможностью параллельного подключения к роторному насосу с одной стороны к входной части магистрали насоса, а с другой - к выходной части магистрали насоса, причем канал регулируемой рециркуляции крови содержит клапан, связанный с блоком управления клапаном, обеспечивающим пульсацию с заданной частотой и скважностью потока крови, поступающего через оксигенатор в артериальную линию системы сердечно-легочного обхода путем частичного или полного перекрытия и открытия просвета канала регулируемой рециркуляции крови.

2. Устройство по п. 1, в котором используют клапан с электромеханическим приводом.

3. Устройство по п. 1, в котором канал регулируемой рециркуляции крови подключен к входной и выходной частям магистрали насоса через тройники.

4. Устройство по п. 1, в котором канал регулируемой рециркуляции крови представляет собой эластичную трубку или сосудистый протез.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665180C1

US 3533408 A, 13.10.1970
US 6547753 B1, 15.04.2003
US 2016000983 A1, 07.01.2016
US 2004015042 A1, 22.01.2004
US 2015057488 A1, 26.02.2015
US 2007265703 A1, 15.11.2007
СПОСОБ ИСКУССТВЕННОГО КРОВООБРАЩЕНИЯ И АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Багаев С.Н.
  • Захаров В.Н.
  • Орлов В.А.
  • Парыгин А.А.
  • Червов С.И.
RU2226111C2
Способ очистки антрахинона, 2-хлорантрахинона, этилантрахинона и хинизарина с помощью дистилляции 1954
  • Удлер Б.Е.
SU104462A1

RU 2 665 180 C1

Авторы

Готье Сергей Владимирович

Иткин Георгий Пинкусович

Даты

2018-08-28Публикация

2018-02-06Подача