СПОСОБ ПОЛУЧЕНИЯ И АТТЕСТАЦИИ СТАНДАРТНОГО ОБРАЗЦА АНТИГЕНА ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА Российский патент 2018 года по МПК G01N33/52 

Описание патента на изобретение RU2667957C1

Изобретение относится к области медицинской биотехнологии, производству и контролю вирусных вакцин и касается способа получения и аттестации стандартного образца (СО) гликопротеина Е (gpE) вируса клещевого энцефалита (ВКЭ). Изобретение может быть использовано для решения практических задач медицинской биотехнологии -аттестации стандартного образца предприятия (СОП) для контроля специфической активности вакцины и определения количественного содержания гликопротеина Е в полуфабрикатах и готовом препарате вакцины КЭ.

Определение содержания антигена ВКЭ в вакцинах проводится с помощью метода иммуноферментного анализа (ИФА). При этом для количественного определения вирусного антигена методом ИФА необходимо использовать аттестованный СОП вакцины клещевого энцефалита с известной концентрацией белка Е.

Из-за вариабельности антигенных свойств разных штаммов ВКЭ, проявляющейся в индивидуальных особенностях взаимодействия вирусных антигенов каждого штамма с панелями моноклональных антител, наиболее достоверным вариантом является использование для изготовления и аттестации СО, СОП производственного штамма вируса, использующегося при производстве вакцины.

Другая методологическая проблема состоит в том, что белки ВКЭ (и в первую очередь основной иммуноген - gpE) нестабильны и чувствительны к воздействию рН и протеаз. Срок их хранения в жидком виде ограничен, а при замораживании-оттаивании (в том числе лиофилизации) происходят изменения структуры, ведущие к снижению аффинности в иммунологических реакциях.

При аттестации контрольных образцов необходимо применять методы, отличные по физико-химическим принципам от тех, в которых эти образцы в дальнейшем будут выступать стандартами. Наиболее подходящими являются прямые физические методы, например, гравиметрический. Поскольку аттестуемый СОП вакцины будет в дальнейшем использоваться в ИФА и отсутствуют международные или отраслевые стандарты белка Е, то нельзя применять методы, основанные на феномене взаимодействия антиген-антитело, так как результат этих методов будет зависеть от свойств применяемых антител.

Учитывая, что количество gpE в материале для изготовления стандарта невелико, а его очистка сопряжена с опасностью изменений структуры, то оптимальным вариантом является выделение цельновирионной фракции из культуральной жидкости. В составе вирионов gpE наиболее стабилен и сохраняет антигенную активность и иммуногенность. Между тем в таком виде нельзя определить его концентрацию прямыми методами, так как он находится в смеси с другими вирионными белками, белками клеток-продуцентов и компонентами питательной среды.

В связи с этим, в целях аттестации СО нами предложено применять опосредованные вычисления. После определения концентрации общего белка в образце по методу Лоури или Несслера, с помощью электрофореза в полиакриамидном геле (ПААГ) устанавливают долю содержания gpE в образце. Зная два этих показателя, вычисляют абсолютную концентрацию gpE.

Стабильность такого стандартного образца (СО) вирусных белков ограничена. Из-за того, что СО вирусного антигена необходимо хранить в жидком виде, максимальный срок хранения составляет 1 месяц при температуре 2-8°С. Однако, этого времени достаточно для того, чтобы провести аттестацию лиофилизированного СОП вакцины КЭ.

Задачей, решаемой данным изобретением, является получение и аттестация стандартного образца гликопротеина Е вируса КЭ.

Поставленная задача решается следующим образом:

Для изготовления СО антигена ВКЭ используют производственный штамм ВКЭ 205, вирус репродуцируют в культуре первично-трипсинизированных фибробластов куриных эмбрионов. Полученную культуральную жидкость инактивируют формальдегидом, очищают с помощью осаждения протаминсульфатом, фильтрации. Затем концентрируют с помощью ультрафильтрации в тангенциальном потоке. Затем проводят тонкую очистку с помощью эксклюзионной хроматографии и финишное концентрирование с помощью центрифужных концентраторов.

Полученный концентрат СО антигена ВКЭ контролируют по следующим показателям:

- содержание общего белка;

- чистота высокомолекулярной фракции (ВЭЖХ);

- подлинность (идентификация электрофоретических полос, соответствующих gpE, в Western-blot);

- определение относительной концентрации gpE (электрофорез в ПААГ).

После этого расчетно определяют абсолютное содержание gpE в концентрате СО антигена ВКЭ, разводят до необходимой концентрации и упаковывают для хранения.

Новым в предлагаемом способе является использование комплекса методов очистки и характеризации гликопротеина Е в составе стандартного образца антигена вируса КЭ (электрофорез в ПААГ, Western-blot и определение концентрации общего белка), позволяющих напрямую рассчитать содержание основного иммуногена ВКЭ.

Пример 1.

В качестве материала для выделения антигена вируса КЭ использовали:

концентрат вирусной взвеси (с.57) объемом 1,10 л.

Основные показатели качества:

Общий белок 2,33 мг/мл

Антигенная активность 31,96 мкг/мл

Овальбумин 0,080 мкг/мл (80,38 нг/мл)

Концентрат был получен после инактивации, осветляющей фильтрации и концентрирования методом ультрафильтрации в тангенциальном потоке.

Хроматографическая очистка проводилась эксклюзионной хроматографией с использованием хроматографа АКТА Explorer 100 (Amersham bioscience, Sweden), колонны XK-50-70 (GE Healthcare, Sweden), Sepharose 6FF (GE HealthCare, Sweden), 0,05 M фосфатный буферный раствор, рН 7,5-7,7 (Фиг. 1).

Контроль чистоты цельновирионной фракции проводили с помощью ВЭЖХ (колонна ProteinPac 300 SW).

Контроль концентрации общего белка проводили по методу Лоури.

Контроль антигенной активности проводили в ИФА с помощью коммерческой тест-системы.

Условия хроматографии:

Скорость потока: 25,0 мл/мин Предел давления в системе: 0,3 МПа Промывка колонны: 8,0 мл элюирущего раствора. Объем образца: 160-180 мл. Объем элюции: 1600,0 мл. Параметры контроля: скорость потока и поглощение UV-280 нм Продолжительность одного цикла: около 90,0 минут

Анализ методом ВЭЖХ показал, что содержание высокомолекулярной фракции в осветленном концентрате вирусной взвеси составило 9,3%, в очищенном концентрате - 98,8% (Фиг. 2).

Концентрирование антигена ВКЭ проводили с помощью центрифуги Thermo Multifuge 4KR (ThermoScientific, USA; Heraeus, Germany) с баккет-ротором, центрифужных концентраторов MilliporeAmicon Ultra-15 с порогом отсечения 10,0 кДа (Millipore, France).

В каждый концентратор вносили 15 мл очищенного концентрат. Центрифугировали при 4000g, 15°С в течение 20-40,0 мин до объема 1,0 мл раствора в каждом концентраторе. После остановки центрифуги удаляли пермеат и доливали очищенный концентрат. Затем повторяли процесс.

Контроль концентрации общего белка проводили по методу Лоури.

Контроль антигенной активности проводили в ИФА.

В процессе концентрирования всего было получено 30,0 мл центрифужного концентрата и около 1,1 л пермеата. Таким образом, было проведено концентрирование по объему в 37,2 раза (табл. 1).

В ходе аттестации СО антигена ВКЭ проводили контроль концентрации общего белка по методу Лоури без осаждения (ГФ XII, ч. 2). В качестве стандарта использовали ОСО ФГБУ ГНЦ МЗ РФ с содержанием альбумина 10,1%. Измерение ОП растворов проводили на спектрофотометрах Shimazu 1800-UV и при длине волны 750 нм. Расчет концентраций белка в контрольном и исследуемом образцах осуществляли по калибровочной кривой.

Было проведено 5 серий исследований центрифужного концентрата. Среднее значение содержания общего белка составило 1,65 мг/мл.

Определение относительного содержания gpE в СО проводили с помощью электрофореза в полиакриламидном геле, подтверждение подлинности gpE на электрофореграмме проводили с помощью Western-blot (Фиг. 3).

Для анализа использовали маркеры молекулярных масс Spectra Multicolor High Rang Protein Ladder 315-42 кДа и Unstained Protein WW Marker 116-14,4 кДа (ThermoFisher), Coomassi blue, Диаминобензидин («Sigma»), ECL detection reagent (Amersham), пленка Hyperfilm ECL (Amersham), PVDF-мембрану, первичные мышиные моноклональные антитела к белку Е линии 14D51 (ЗАО «Биосан»), вторичные моноклональные антитела к мышиным IgG, коньюгированные с пероксидазой хрена, камеру для электрофореза mini-protean 3 (BIO-RAD), камеру для полусухого переноса (BIO-RAD). Всего было проведено 11 серий исследований.

33 электрофорезные дорожки были подвергнуты денситометрии (Фиг. 4).

По денситограммам были определены молекулярные массы выявленных белков и их относительные концентрации (доля в суммарной площади пиков).

По электрофоретической подвижности можно идентифицировать сывороточный альбумин человека (66 кДа), гликопротеин Е вируса КЭ (53,68 кДа - полипептид, 55 кДа -гликозилированная форма), капсидный белок С ВКЭ (12,1 кДа) и мембранный белок М ВКЭ (8,2 кДа). Остальные полосы на электрофорезе соответствуют различным белкам субстратных клеток и компонентов питательной среды.

В проведенных исследованиях подвижность gpE варьировала от 52,72 до 56,03 кДа (средняя 54,17 кДа, табл. 2), что согласуется с литературными данными (Фиг. 4).

Принадлежность белка с электрофоретической подвижностью, соответствующей 54,17 кДа к gpE ВКЭ была подтверждена специфической реакцией с моноклональными антителами против gpE ВКЭ в Western-blot (Фиг. 5).

Относительную концентрацию целевого белка (gpE) вычисляли, как долю площади пика среди общей площади денситограммы. Она составляла от 18,6 до 32,4% (табл. 2). Однако два результата были исключены из дальнейшей обработки, так как отклонение их значений от среднего арифметического было больше двух стандартных отклонений (табл. 2, №14, 15 помечено серым).

Таким образом, после исключения двух наблюдений, доля пика денситограммы, соответствующего gpE ВКЭ (относительная концентрация) составила 28,18±2,06%.

Расчет концентрации gpE вируса КЭ в центрифужном концентрате проводили по формуле:

CgpE=Ctotal*Pband/l 00%,

где

CgpE - концентрация gpE ВКЭ в пробе

Ctotal - концентрация общего белка в пробе

Pband - доля площади пика gpE ВКЭ (относительная концентрация)

CgpE=l.65 г/л*28.18%/100%=0.465 г/л

Расчет стандартного отклонения среднего концентрации gpE проводили по формуле:

σCgpE=CgpE*SQRT((σCtotal/Ctotal)2+(σPband/Pband)2),

где

CgpE - концентрация gpE ВКЭ в пробе

Ctotal - концентрация общего белка в пробе

Pband - доля площади пика gpE ВКЭ (относительная концентрация)

σ - стандартные отклонения соответствующих величин

σCgpE=0,465*SQRT((0,13/1,65)2+(2,06/28,18)2)=0,050

Таким образом, количественное содержание gpE ВКЭ в центрифужном концентрате составила 0.465±0,050 г/л.

Для приготовления стандартного образца антигена ВКЭ разводили центрифужный концентрат в стабилизирующем растворе в 8,4 раза. Получили СО антигена вируса КЭ (стандарт 1 уровня), содержащий 55,36±5,95 мкг/мл gpE ВКЭ. Полученный стандартный образец разлили в пластиковые пробирки с завинчивающимися крышками по 1 мл.

Стабильность СО в течение 1 месяца хранения при температуре 2-8°С

Похожие патенты RU2667957C1

название год авторы номер документа
Рекомбинантная плазмида pHis6-flagG-protE, обеспечивающая синтез рекомбинантного химерного белка, включающего эпитопы гликопротеина Е вируса клещевого энцефалита и флагеллин G S.typhii и используемого в качестве основы для вакцины против вируса клещевого энцефалита 2018
  • Белавин Павел Александрович
  • Дейнеко Елена Викторовна
  • Протопопова Елена Викторовна
  • Коновалова Светлана Николаевна
  • Локтев Валерий Борисович
RU2702716C2
СПОСОБ ПОЛУЧЕНИЯ ИММУНОГЕННОЙ КОМПОЗИЦИИ НА ОСНОВЕ ТРЕХ ГИБРИДНЫХ БЕЛКОВ ОБОЛОЧКИ ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА, ОПРЕДЕЛЯЮЩИХ ПРИНАДЛЕЖНОСТЬ К СИБИРСКОМУ (DBD2-D3S), ЕВРОПЕЙСКОМУ (DBD2-D3E) И ДАЛЬНЕВОСТОЧНОМУ (DBD2-D3D) ПОДТИПАМ ВИРУСА; РЕКОМБИНАНТНЫЕ ПЛАЗМИДЫ pDBD2-D3S, pDBD2-D3E И pDBD2-D3D; ШТАММЫ-ПРОДУЦЕНТЫ Escherichia coli M15 [pREP4]; ХИМЕРНЫЕ БЕЛКИ И ИХ ПРИМЕНЕНИЕ 2014
  • Лящук Александр Михайлович
  • Аксенова Екатерина Ивановна
  • Ершова Анна Степановна
  • Грунина Татьяна Михайловна
  • Бартов Михаил Сергеевич
  • Савина Дарья Михайловна
  • Манухина Мария Сергеевна
  • Гудов Владимир Петрович
  • Семихин Александр Сергеевич
  • Гра Ольга Алексеевна
  • Ткачук Артем Петрович
  • Галушкина Зоя Михайловна
  • Карягина-Жулина Анна Станиславовна
  • Лунин Владимир Глебович
  • Гинцбург Александр Леонидович
RU2560588C1
СПОСОБ ПОЛУЧЕНИЯ ВАКЦИНЫ КЛЕЩЕВОГО ЭНЦЕФАЛИТА 2017
  • Стронин Олег Владимирович
  • Колтунов Александр Анатольевич
  • Епанчинцев Антон Александрович
  • Шарова Ольга Игоревна
  • Учуватова Елена Валерьевна
  • Дьяконова Елена Васильевна
  • Шкуратова Ольга Владиславовна
  • Гаврилова Маргарита Анатольевна
  • Бакулева Надежда Васильевна
  • Теплова Надежда Владимировна
  • Коновалова Олеся Владимировна
RU2678431C1
СПОСОБ ПОЛУЧЕНИЯ ВИРИОННОГО АНТИГЕНА ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА 2009
  • Ляпустин Виктор Николаевич
  • Ворович Михаил Фридрихович
RU2402606C1
СПОСОБ ПОЛУЧЕНИЯ ВАКЦИНЫ КЛЕЩЕВОГО ЭНЦЕФАЛИТА 2001
  • Красильников И.В.
  • Шарова О.И.
  • Мищенко И.А.
  • Воробьева М.С.
  • Расщепкина М.Н.
  • Ставицкая Н.Х.
  • Билалова Г.П.
RU2203089C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВИРИОННЫХ СТРУКТУР ФЛАВИВИРУСОВ 2007
  • Ляпустин Виктор Николаевич
  • Лашкевич Василий Андреевич
RU2368660C1
Способ получения антигена или антигенов для производства противогриппозной вакцины и вакцина на его основе 2019
  • Трухин Виктор Павлович
  • Евтушенко Анатолий Эдуардович
  • Красильников Игорь Викторович
  • Савина Наталья Николаевна
  • Уйба Станислав Валентинович
  • Васильев Андрей Николаевич
  • Рыськова Елена Владимировна
  • Быков Дмитрий Геннадьевич
  • Начарова Елена Петровна
  • Аракелов Сергей Александрович
RU2710239C1
Иммунобиологическое средство для профилактики заболеваний, вызванных вирусом клещевого энцефалита на основе рекомбинантного вируса рода Flavivirus 2022
  • Кузнецова Надежда Анатольевна
  • Синявин Андрей Эдуардович
  • Усачев Евгений Валерьевич
  • Почтовый Андрей Андреевич
  • Никифорова Мария Андреевна
  • Щетинин Алексей Михайлович
  • Шидловская Елена Владимировна
  • Дивисенко Елизавета Владимировна
  • Васильченко Людмила Александровна
  • Золотарь Анастасия Николаевна
  • Бутенко Александр Михайлович
  • Ларичев Виктор Филиппович
  • Захарова Анастасия Андреевна
  • Ремизов Тимофей Андреевич
  • Рубальский Олег Васильевич
  • Токарская Елизавета Александровна
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
  • Логунов Денис Юрьевич
  • Гинцбург Александр Леонидович
RU2795800C1
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pSC13D6, СОДЕРЖАЩАЯ ГЕН ОДНОЦЕПОЧЕЧНОГО АНТИТЕЛА ПРОТИВ ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА, И ШТАММ БАКТЕРИЙ Escherichia coli BL21(DE3)/pSC13D6 - ПРОДУЦЕНТ ОДНОЦЕПОЧЕЧНЫХ АНТИТЕЛ ПРОТИВ ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА, ОБЛАДАЮЩИХ ВИРУСНЕЙТРАЛИЗУЮЩИМИ СВОЙСТВАМИ 2008
  • Леванов Лев Николаевич
  • Тикунова Нина Викторовна
  • Матвеев Леонид Эдуардович
  • Гончарова Елена Павловна
  • Юн Татьяна Эверестовна
  • Рыжиков Александр Борисович
  • Матвеева Вера Александровна
  • Рихтер Владимир Александрович
RU2378378C1
Способ получения стандартного образца содержания антител IgG человека к вирусу клещевого энцефалита 2020
  • Кормщикова Елена Сергеевна
  • Росина Елена Владимировна
  • Воробьев Константин Анатольевич
  • Парамонов Игорь Владимирович
  • Кудашева Эльвира Юрьевна
RU2735782C1

Иллюстрации к изобретению RU 2 667 957 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ И АТТЕСТАЦИИ СТАНДАРТНОГО ОБРАЗЦА АНТИГЕНА ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА

Изобретение относится к области медицинской биотехнологии, а именно способу получения и аттестации стандартного образца гликопротеина Е вируса клещевого энцефалита. Для этого вирус клещевого энцефалита репродуцируют в культуре эукариотических клеток, а затем инактивируют формальдегидом. Далее проводят очистку и концентрирование вируса с помощью осаждения, фильтрации, тангенциальной ультрафильтрации, гель-хроматографии и повторной ультрафильтрации. Аттестацию полученного стандартного образца проводят с помощью определения концентрации общего белка спектрофотометрическим методом и относительной концентрации гликопротеина Е вируса клещевого энцефалита методом электрофореза в полиакриламидном геле. Расчет абсолютной концентрации гликопротеина Е в стандартном образце производят с учетом концентрации общего белка и относительной концентрации гликопротеина Е в пробе. Подлинность стандартного образца подтверждают методом иммуноблота. Изобретение обеспечивает определение количественного содержания гликопротеина Е в пробе и контроль специфической активности вируса клещевого энцефалита в вакцине клещевого энцефалита. 2 з.п. ф-лы, 3 табл., 5 ил., 1 пр.

Формула изобретения RU 2 667 957 C1

1. Способ получения и аттестации стандартного образца гликопротеина Е вируса клещевого энцефалита, включающий накопление вируса клещевого энцефалита в культуре эукариотических клеток, инактивацию вируса формальдегидом, очистку и концентрирование вируса с помощью осаждения, фильтрации, тангенциальной ультрафильтрации, гельхроматографии и повторной ультрафильтрации, последующей аттестации полученного стандартного образца с помощью определения концентрации общего белка спектрофотометрическим методом, относительной концентрации гликопротеина Е вируса клещевого энцефалита методом электрофореза в полиакриламидном геле, расчет абсолютной концентрации гликопротеина Е в стандартном образце, исходя из относительной концентрации гликопротеина Е и концентрации общего белка.

2. Способ по п. 1, отличающийся тем, что определение подлинности стандартного образца проводят методом иммуноблота с моноклональными антителами против гликопротеина Е вируса клещевого энцефалита.

3. Способ по п. 1, отличающийся тем, что для получения стандартного образца используется тот же производственный штамм вируса клещевого энцефалита, что и для производства вакцины.

Документы, цитированные в отчете о поиске Патент 2018 года RU2667957C1

СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МУЦИНА 2004
  • Стрелец Е.В.
  • Егорова Е.Н.
RU2250465C1
СПОСОБ ПОЛУЧЕНИЯ ВИРИОННОГО АНТИГЕНА ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА 2009
  • Ляпустин Виктор Николаевич
  • Ворович Михаил Фридрихович
RU2402606C1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
БАЛКА ДЛЯ КРЫЛЬЕВ МЕТАЛЛИЧЕСКИХ АЭРОПЛАНОВ 1924
  • А. Рорбах
SU1048A1
ПРИШЕДЬКО Д.В
Количественное определение гликопротеина Е в стандартном образце предприятия вакцины клещевого энцефалита ЭНЦЕВИР
Сибирский медицинский журнал, 2011, 26, 2, стр
Счетный сектор 1919
  • Ривош О.А.
SU107A1
HAVLIK M et al
Comprehensive size-determination of whole virus vaccine particles using gas-phase electrophoretic mobility macromolecular analyzer, atomic force microscopy, and transmission electron microscopy, Analytical chemistry, 2015, 87, 17, pp
ПРИСПОСОБЛЕНИЕ ДЛЯ СУШКИ ДЕРЕВЯННЫХ ФИГУРНЫХ ИЗДЕЛИЙ 1927
  • Кальюнен Г.А.
SU8657A1

RU 2 667 957 C1

Авторы

Стронин Олег Владимирович

Колтунов Александр Анатольевич

Епанчинцев Антон Александрович

Шарова Ольга Игоревна

Учуватова Елена Валерьевна

Дьяконова Елена Васильевна

Шкуратова Ольга Владиславовна

Пришедько Дмитрий Викторович

Шквыря Наталья Станиславовна

Аникина Надежда Николаевна

Даты

2018-09-25Публикация

2017-09-25Подача