Способ определения напряжений в колеблющейся лопатке Российский патент 2018 года по МПК G01N23/20 G01L1/25 

Описание патента на изобретение RU2674408C1

Изобретение относится к области машиностроения, в частности турбостроения, и может быть использовано при поузловой доводке элементов ступеней турбомашин, а именно колес и лопаток.

Исследования и анализ напряженно деформированного состояния лопаток и колес газотурбинных двигателей необходимы для обеспечения их надежной работы.

Известен способ определения остаточных напряжений (JP 3940540, 2007), который включает в себя генерирование поверхностной волны путем приложения ударной нагрузки в окрестности контрольной точки на детали, в которой необходимо определить остаточные напряжения. Затем выявляют характеристики акустических волн в зависимости от наличия или отсутствия остаточных напряжений. Недостатками способа являются большие затраты времени для получения необходимых результатов, а также невозможность определения напряжений при динамических нагрузках.

Известен способ определения напряжений при статических нагрузках, когда при измерении рентгенографических постоянных исследуемого материала используется нагружающее устройство, в котором реализуется четырехточечный изгиб (EUROPEAN STANDARD EN 15305, August 2008 "Non-destructive Testing - Test Method for Residual Stress analysis by X-ray Diffraction"). В данном способе на исследуемом образце нагружающее устройство располагают в центре и с помощью рентгеновского дифрактометра производят необходимые измерения. К недостатку известного способа относится отсутствие возможности определять напряжения в исследуемом объекте при динамических нагрузках.

Наиболее близким аналогом является метод определения остаточных напряжений на неподвижном объекте, в частности, в лопатках турбин и компрессоров (Н.А. Яблокова «Анализ напряженно-деформированного состояния лопаток компрессора из сплава ВТ3-1 по рентгенодифракционным данным». В мире неразрушающего контроля, 4[58] декабрь 2012, стр. 42-44). Определение остаточных напряжений производится с использованием рентгеновского дифрактометра Xstress 3000 G3R. Определение составляющих напряжений на поверхности лопатки проводится в трех точках в направлениях измерения азимутного угла ϕ равного 0°, 45° и 90°. Недостатком данного метода являются большие затраты по времени получения окончательных результатов в виде распределения напряжений на поверхности лопатки. Кроме того, данный метод не позволяет определять напряжения в колеблющейся лопатке.

Техническая проблема, решение которой обеспечивается при осуществлении предлагаемого способа, заключается в реализации возможности определения напряжения в колеблющейся лопатке, что упрощает и ускоряет процесс поузловой доводки элементов ступеней турбомашин.

Технический результат заключается в обеспечении бесконтактного определения напряжений в колеблющихся лопатках колес турбомашин.

Решение технической проблемы с достижением заявленного технического результата обеспечивается реализацией способа определения напряжений в колеблющейся лопатке, в котором задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки.

Настоящее изобретение поясняется подробным описанием способа определения напряжений в колеблющейся лопатке со ссылкой на фигуру, где представлена блок-схема, показывающая операции, выполняемые при осуществлении заявляемого способа.

На фигуре приняты следующие обозначения:

1 - программный блок;

2 - детектор рентгеновского излучения;

3 - блок синхронизации;

4 - акселерометр;

5 - блок отображения результатов обработки;

6 - вывод результатов на экран;

7 - сигнал для вычисления напряжений;

8 - блок вычисления спектра.

Способ определения напряжений в колеблющейся лопатке реализуется следующим образом. Задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки. Измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода. Используя результаты измерений вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки.

Для начала проведения измерения межплоскостных расстояний в кристаллической решетке в управляющем компьютере запускают программный блок 1, в которой заложены данные для управления блоком 3 синхронизации и блоком 8 вычисления спектра, сбором данных с детектора рентгеновского излучения, который находится в рентгеновском дифрактометре. Блок 3 синхронизации собирает и обрабатывает данные поступающие от программного блока 1 и с детектора 2 рентгеновского излучения. После обработки блок 3 синхронизации передает данные в блок 5 отображения результатов обработки и сигнал 7 для вычисления напряжений в блок вычисления напряжений (на чертеже не показан). Блок 8 вычисления спектра собирает и обрабатывает информацию, поступающую с акселерометра 4, установленного на лопатке. После обработки блок 8 вычисления спектра передает данные в блок 5 отображения результатов обработки. Далее блок 5 выводит на экран монитора 6 полученные данные от блока 8.

Задают частоту колебаний лопатки и поддерживают постоянной с помощью акселерометра, установленного на поверхности лопатки. На заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки.

При совершении колебательных движений лопатка испытывает упругую деформацию. Определение упругих напряжений основано на измерении межплоскостного расстояния кристаллической решетки и его относительного изменения. Для измерения межплоскостного расстояния кристаллической решетки используют уравнение Вульфа-Брэгга:

2dSinθ=nλ,

где

d - межплоскостное расстояние;

θ - угол падения рентгеновских лучей;

n - целое число (порядок отражения);

λ - длина волны характеристического рентгеновского излучения.

Основой рентгеноструктурного метода определения напряжений является то, что все атомные плоскости во всех кристаллитах материала одинаково ориентированные по отношению к действующим упругим силам, меняют свои межплоскостные расстояния. Это означает, что согласно формуле Вульфа-Брэгга увеличение или уменьшение величины межплоскостных расстояний приведет к уменьшению или увеличению угла θ, что повлечет за собой смещение измеряемой рентгеновской линии на рентгенограмме, полученной с образца, в котором наведены напряжения, по отношению к исходному состоянию. Для определения напряжений нужно получить отражение от одних и тех же плоскостей в исходном и напряженном состоянии.

Используя результаты измерений межплоскостных расстояний кристаллической решетки вычисляют упругую деформацию (ε) в плоскости съемки:

ε=(d-d0)/d0,

где

d - межплоскостное расстояние в напряженном состоянии;

d0 - межплоскостное расстояние в ненапряженном состоянии.

После вычисления упругой деформации, по ее величине определяют величину напряжения (σ) в заданной точке лопатки, согласно закону Гука

σ=Eε,

где

Е - модуль Юнга;

ε - упругая деформация.

Определение напряжений на лопатке производится за весь период колебаний, начиная с нулевой амплитуды колебаний в заданной точке лопатки. Далее из полученного массива данных выбираются значения, полученные при максимальной амплитуде колебаний.

Предложенный способ значительно ускоряет и упрощает процесс поузловой доводки элементов турбомашин при проведении испытаний, а также на этапе ремонта.

Похожие патенты RU2674408C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПРИ СДВИГЕ 2004
  • Бадамшин И.Х.
RU2267112C1
СПОСОБ IN-SITU СИНХРОТРОННЫХ ИССЛЕДОВАНИЙ МНОГОСЛОЙНЫХ ПОКРЫТИЙ В ПРОЦЕССЕ ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ 2022
  • Филиппов Андрей Владимирович
  • Воронцов Андрей Владимирович
  • Шамарин Николай Николаевич
  • Денисова Юлия Александровна
  • Москвичев Евгений Николаевич
  • Княжев Евгений Олегович
RU2791429C1
Способ рентгенографического определения угла отражения 1989
  • Кемфе Бернд
  • Ауэрсвальд Эллен
  • Ефанов Валерий Павлович
  • Кертель Гюнтер
  • Михель Бернд
  • Роч Хельмут
  • Семенов Алексей Юрьевич
  • Ценкер Рольф
SU1702266A1
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ КРИВЫХ ДИФРАКЦИОННОГО ОТРАЖЕНИЯ 2013
  • Благов Александр Евгеньевич
  • Писаревский Юрий Владимирович
  • Просеков Павел Андреевич
  • Таргонский Антон Вадимович
  • Ковальчук Михаил Валентинович
RU2539787C1
Способ определения локальных амплитуд сдвиговых упругих деформаций в кристаллах пьезорезонаторов 1990
  • Алешко-Ожевский Олег Павлович
  • Погосян Ашот Сережаевич
SU1716407A1
Способ определения первой инвариантной величины тензора деформации 1989
  • Кемпфе Бернд
  • Ценкер Рольф
  • Михаэль Детлеф
  • Кертель Гюнтер
  • Михель Бернд
  • Тренкнер Карстен
  • Ефанов Валерий Павлович
  • Семенов Алексей Юрьевич
SU1711048A1
СПОСОБ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА 1998
  • Славов В.И.
  • Наумова О.М.
  • Яковлева Т.П.
RU2142623C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ТЕКУЧЕСТИ 2002
  • Бадамшин И.Х.
RU2235986C1
СПОСОБ МОДУЛЯЦИИ ИНТЕНСИВНОСТИ РЕНТГЕНОВСКОГО ПУЧКА 2016
  • Трушин Владимир Николаевич
  • Чупрунов Евгений Владимирович
  • Маркелов Алексей Сергеевич
  • Грибко Владимир Владимирович
RU2642886C1
СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ МАТЕРИАЛА С КРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ 2008
  • Полянский Анатолий Митрофанович
  • Полянский Владимир Анатольевич
RU2366921C1

Иллюстрации к изобретению RU 2 674 408 C1

Реферат патента 2018 года Способ определения напряжений в колеблющейся лопатке

Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений, вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки. Технический результат: обеспечение возможности определения напряжений в колеблющейся лопатке посредством бесконтактного рентгенографического метода. 1 ил.

Формула изобретения RU 2 674 408 C1

Способ определения напряжений в колеблющейся лопатке, характеризующийся тем, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений, вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки.

Документы, цитированные в отчете о поиске Патент 2018 года RU2674408C1

Н.А
Яблокова
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
В мире неразрушающего контроля, 4[58] декабрь 2012, стр
Устройство для усиления микрофонного тока с применением самоиндукции 1920
  • Шенфер К.И.
SU42A1
В.К.Кулешов, Ю.И.Сертаков, П.В.Ефимов, В.Ф.Шумихин
Практика радиографического контроля
Издательство Томского политехнического университета, 2009, стр
Нивелир для отсчетов без перемещения наблюдателя при нивелировании из средины 1921
  • Орлов П.М.
SU34A1
Коридорная многокамерная вагонеточная углевыжигательная печь 1921
  • Поварнин Г.Г.
  • Циллиакус А.П.
SU36A1
Экономайзер 0
  • Каблиц Р.К.
SU94A1
Прибор для очистки паром от сажи дымогарных трубок в паровозных котлах 1913
  • Евстафьев Ф.Ф.
SU95A1
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания 1917
  • Латышев И.И.
SU96A1
Поршень для воздушных тормозов с сжатым воздухом 1921
  • Казанцев Ф.П.
SU188A1
Лимонов Игорь Анатольевич
Автоматизация процесса рентгенографического контроля дефектов лопаток ГТД, получаемых методами точного литья
Автореферат диссертации на соискание ученой степени кандидата технических наук
Рыбинск, 2004
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ИЗДЕЛИЯХ ИЗ МОНОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ РЕНТГЕНОВСКИМ МЕТОДОМ 2010
  • Алексеев Александр Анатольевич
  • Тренинков Игорь Александрович
RU2427826C1
WO 2011148079 A1, 01.12.2011
US 4803639 A, 07.02.1989.

RU 2 674 408 C1

Авторы

Селезнев Валерий Григорьевич

Розанов Михаил Александрович

Даты

2018-12-07Публикация

2018-02-16Подача