Изобретение относится к машиностроению, а именно к упрочнению резьбовых соединений изделий.
Проблемой в обработке резьбовых соединений является ограниченная возможность регулирования глубины закаленного слоя при обработке поверхностей сложного профиля, к которым может быть отнесена и резьбовая поверхность. Действительно, выступающие части профильной поверхности обладают меньшей способностью теплоотвода в тело детали, чем ее заглубленные части, и требуют меньшей дозы поглощаемой энергии лазерного излучения по сравнению с любыми другими элементами поверхности для нагрева до температуры закалки. Более того, теплоотдача от нагретого выступа в воздух, незначительная сама по себе, еще более лимитирована дополнительным термическим сопротивлением нанесенного светопоглощающего покрытия. Совокупность указанных причин может привести к перегреву выступов обрабатываемой резьбовой поверхности и увеличению глубины закаленного слоя вплоть до сплошного прокаливания резьбового выступа и его охрупчивания.
Известен способ лазерной обработки конической резьбовой поверхности изделия [1], включающий формирование пятна нагрева на дне резьбовой канавки лазерным лучом, перемещение лазерного луча вдоль образующей резьбовой поверхности при одновременном вращении изделия относительно продольной оси, отличающийся тем, что при формировании пятна нагрева центр пятна нагрева совмещают с серединой резьбовой канавки, диаметр пятна выбирают равным шагу резьбы, а перемещение луча поддерживают равным величине шага резьбы за один оборот вращения резьбовой поверхности изделия.
Недостатком способа является слабая точность позиционирования, требуется корректировка положения элементов оптической системы.
Известен способ упрочнения резьбы, основанный на использовании лазерного воздействия на поверхность резьбы, при этом регулирование поглощаемой поверхностью энергии лазерного излучения осуществляют путем изменения поглощающей способности поверхности выступов и впадин резьбы [2].
По мнению авторов данного изобретения это позволяет повысить качество закаленного слоя за счет выравнивания его глубины при расширении диапазона использования лазерной технологии обработки резьбовых поверхностей.
Недостатком данного способа является сложность процесса и относительно низкая производительность процесса обработки, обусловленные тем, что, во-первых, данный способ требует предварительной подготовки обрабатываемой поверхности, заключающейся в нанесении светопоглощающего покрытия гальваническим методом и осаждением на поверхность химических растворов. Сложность заключается также и в том, что необходима защита поверхности резьбы технологическими масками. Использование масок при нанесении их на резьбовую поверхность снижает точность получения заданных размеров защиты выступов и впадин резьбы, что повышает вероятность получения структурного градиента, выходящего за пределы допустимости, и снижает качество обрабатываемой поверхности.
Известен способ упрочнения изделия с резьбой [3], включающий нагрев участка резьбы с помощью источника нагрева в виде лазера, формирование пятна лазерного луча на дне резьбовой канавки по ее центру, перемещение лазерного луча относительно продольной оси при вращении изделия при величине перемещения лазерного луча, равной величине шага резьбы за один оборот вращения, отличающийся тем, что формирование пятна лазерного луча осуществляют сканирующим лазерным лучом с частотой его сканирования 200÷600 Гц вдоль оси вращения и амплитуде сканирования, равной 0,6÷0,8 шага резьбы.
Известен способ лазерной обработки поверхности резьбовых соединений из низколегированных сталей [4].
Способ включает обработку поверхности резьбового соединения лазерным лучом путем формирования пятна нагрева лазерного луча диаметром, равным шагу резьбы, и перемещения луча вдоль образующей резьбовой поверхности при ее вращении относительно продольной оси. Лазерный луч за один оборот вращения резьбовой поверхности, механически связанной с оптической системой лазерного луча, перемещают на величину, равную шагу резьбы. Перед лазерной обработкой производят чернение обрабатываемой резьбовой поверхности за исключением зон, прилегающих к вершине резьбы и резьбовой канавки, на величину не менее 10% от длины боковой поверхности резьбы. Формирование пятна нагрева осуществляют на боковой поверхности резьбы, а лазерную обработку поверхности ведут под углом, на 2-3° превышающим угол наклона резьбовой поверхности относительно оси вращения резьбового соединения. Повышается механическая прочность резьбового соединения за счет устранения слоя с закалочной структурой, обладающей высокой хрупкостью.
За прототип принят способ упрочнения резьбовой поверхности изделия [5], включающий формирование пятна лазерного луча на дне резьбовой канавки по ее центру с помощью источника нагрева в виде лазера, перемещение лазерного луча относительно продольной оси изделия при одновременном вращении изделия на величину шага резьбы за один оборот вращения, отличающийся тем, что формирование пятна лазерного луча на дне канавки осуществляют при удельной плотности энергии непрерывного излучения лазера, равной 12÷20 Вт/см2, а диаметр пятна лазерного луча выбирают из соотношения d=(1,2÷1,7)s, где d - диаметр пятна лазерного луча, s - шаг резьбы. В качестве источника нагрева используют газовый лазер, волоконный лазер.
Основными недостатками аналогов являются сложность процесса и относительно низкая производительность процесса обработки.
Задача, на решение которой направлено заявленное изобретение, заключается в повышении производительности процесса и качества упрочнения резьбовых соединений.
Поставленная задача осуществляется следующим образом. В известном способе лазерного термоупрочнения резьбовых соединений с помощью источника нагрева в виде лазера, обработку осуществляют многоканальным диодным лазером, сформированным из диодных модулей с возможностью отключения некоторых из них во время работы таким образом, что формирование пятна нагрева осуществляют исключительно на боковых поверхностях резьбы и ее вершинах.
Суть заключается в технологических возможностях многоканального диодного источника излучения. Так как лазер формируется из определенного количества диодных модулей излучения, существует возможность отключения некоторых из них во время работы, благодаря чему, при термоупрочнении резьбы излучение попадает исключительно на боковые стенки резьбы и ее вершины, оставляя впадину незакаленной. Дело в том, что впадина резьбового соединения упрочняется методом накатки и при воздействии на нее лазерным излучением появляется риск появления различного рода трещин и дефектов поверхности.
Заявляемый способ позволяет увеличить производительность процесса лазерного термоупрочнения резьбы в 2.5 раза по сравнению с обработкой однолучевыми лазерными излучателями. Это достигается за счет одновременной закалки боковых поверхностей и вершин соседних витков резьбы.
Изобретение поясняется чертежом, где на фиг. 1 изображена схема, иллюстрирующая пример осуществления способа лазерного термоупрочнения резьбового соединения, где 1 - отключенные модули излучения, 2 - работающие модули излучения, 3 - излучения лазера, 4 - фокусирующая линза, 5 - закаленная поверхность.
Таким образом, повышение производительности способа лазерного термоупрочнения резьбового соединения достигается за счет одновременной закалки боковых поверхностей и вершин соседних витков резьбы.
Реализация заявляемого способа решает поставленные автором задачи.
Источники информации:
1. RU, 2241765, C21D 1/09, 10.12.2004.
2. RU, 2241766, C21D 1/09, 10.12.2004.
3. RU, 2545473, C21D 1/09, 27.03.2015.
4. RU, 2599466, C21D 1/09, 20.06.2016,
5. RU, 2554244, C21D 1/09, 27.06.2015 - прототип
название | год | авторы | номер документа |
---|---|---|---|
Устройство для лазерного термоупрочнения резьбы и способ лазерного термоупрочнения резьбы | 2022 |
|
RU2777831C1 |
СПОСОБ УПРОЧНЕНИЯ РЕЗЬБЫ | 2013 |
|
RU2554244C1 |
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ КОНИЧЕСКОЙ РЕЗЬБОВОЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2241765C2 |
Способ обработки кромок многоканальным лазером | 2017 |
|
RU2685297C2 |
СПОСОБ УПРОЧНЕНИЯ РЕЗЬБЫ | 2013 |
|
RU2545473C1 |
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ РЕЗЬБОВЫХ ПОВЕРХНОСТЕЙ | 2003 |
|
RU2241766C1 |
Автоматизированный лазерный технологический комплекс для термоупрочнения поверхности детали | 2017 |
|
RU2708285C1 |
Способ лазерного термоупрочнения | 2019 |
|
RU2700903C1 |
АВТОМАТИЗИРОВАННЫЙ КОМПЛЕКС ДЛЯ ЛАЗЕРНОГО ТЕРМОУПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ИЗДЕЛИЙ | 2017 |
|
RU2710704C1 |
СПОСОБ УПРОЧНЕНИЯ РАЗДЕЛИТЕЛЬНОГО ШТАМПА | 2014 |
|
RU2566224C1 |
Изобретение относится к области машиностроения, а именно к упрочнению резьбовых соединений изделий. Для повышения производительности процесса обработки и качества резьбовых соединений осуществляют лазерное термоупрочнение резьбовых соединений с помощью источника нагрева в виде многоканального диодного лазера, сформированного из диодных модулей с возможностью отключения некоторых из них во время работы таким образом, что формирование пятна нагрева осуществляют исключительно на боковых поверхностях резьбы и ее впадинах. Изобретение позволяет увеличить производительность процесса термоупрочнения резьбы в 2.5 раза за счет одновременной закалки боковых поверхностей и вершин соседних витков резьбы. 1 ил.
Способ лазерного термоупрочнения резьбовых соединений изделий, включающий воздействие на резьбовую поверхность изделия с помощью источника нагрева в виде многоканального диодного лазера, выполненного из диодных модулей излучения, отличающийся тем, что многоканальный диодный лазер выполнен с возможностью отключения диодных модулей излучения в процессе термоупрочнения с обеспечением формирования пятна нагрева одновременно на боковых поверхностях и вершинах соседних витков резьбы.
US 7154067 B2, 26.12.2006 | |||
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ КОНИЧЕСКОЙ РЕЗЬБОВОЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2241765C2 |
JP 5043942 A, 23.02.1993 | |||
СПОСОБ ОБРАБОТКИ РЕЗЬБОВОГО ИЗДЕЛИЯ | 1992 |
|
RU2047661C1 |
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ РЕЗЬБОВЫХ ПОВЕРХНОСТЕЙ | 2003 |
|
RU2241766C1 |
Авторы
Даты
2018-12-25—Публикация
2017-12-29—Подача