Способ получения композиционного материала SiC-TiN Российский патент 2019 года по МПК B22F3/14 C22C29/02 C22C29/16 C04B35/565 C04B35/65 C04B35/58 

Описание патента на изобретение RU2681332C1

Изобретение относится к области технической керамики, в частности к композиционному материалу на основе карбида кремния и нитрида титана, полученный методом горячего прессования с одновременным азотированием, имеющему высокие значения прочности и твердости. Данный материал может быть использован для изготовления износостойких изделий, таких как детали трибологического назначения, а также для создания легких керамических бронеэлементов в составе конструкции.

Известен способ получения композиционного керамического материала технического назначения состава TiN/Al2O3, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытия для режущих и обрабатывающих инструментов [патент Россия №2524061]. Способ получения композиционного керамического материала, заключающийся в использовании в качестве исходной шихты для получения оксинитридной керамики продуктов сгорания на воздухе композиционных смесей на основе грубодисперсного порошка титана и мелкодисперсного порошка оксида титана TiO2 в количестве 20-40 масс. % с добавкой нанопорошка алюминия в количестве 10 масс. %, горячее изостатическое прессование проводят в атмосфере азота при температуре 1550°С в течение 30 минут. Результатом применения способа является композиционный керамический материал состава 90%TiN/10%Al2O3, который обладал следующими механическими характеристиками: относительная плотность 99%, прочность на сжатие 2,2 ГПа, микротвердость 17 ГПа. Недостатком способа является то, что метод горячего изостатического прессования имеет технические сложности, а также высокую стоимость получаемых изделий.

Известен способ получения керамических изделий на основе карбида кремния и нитрида титана. Исходными материалами были: a-SiC порошок (размер частиц 0,5-1 мм) в виде матрицы, Al2O3 и Y2O3 в качестве спекающих добавок и наночастицы TiN (средний размер частиц 20 нм) в качестве упрочняющей фазы. Исходные порошки прессуют до образования прямоугольных образцов и последующего уплотнения методом холодного изостатического прессования при 250 МПа. Далее образцы были подвергнуты жидкофазному спеканию в вакуумной печи при 1950°С в течение 15 мин, а затем при 1850°С в течение 1 часа [Xingzhong Guo, Hui Yang, Lingjie Zhang, Xiaoyi Zhu, Sintering behavior, microstructure and mechanical properties of silicon carbide ceramics containing different nano-TiN additive, Ceramics International 36, 2010, pp. 161-165]. В результате был получен композиционный материал, обладающий следующими характеристиками: прочность на изгиб - 472,0-686,8 МПа, относительная плотность - 91,1-92,8%.

Недостатком данного способа является то, что для уплотнения образцов используют достаточно высокое давление, а также получаемые изделия достаточно дорогие, есть сложности выдерживания точности размеров формовки.

Известен способ получения керамических изделий на основе SiC-керамики, усиленной SiC волокнами, и/или наночастицами TiN. [Lingjie Zhang, Hui Yang, Xingzhong Guo, Jianchao Shen, Xiaoyi Zhu, Preparation and properties of silicon carbide ceramics enhanced by TiN nanoparticles and SiC whiskers, Scripta Materialia 65, 2011, pp. 186-189] Просеянные порошки прессовались под давлением 100 МПа в течение 10 с. Затем в течение 300 с. методом холодного изостатического прессования под давлением 250 МПа. Спекание проводили в печи при температуре 1950°С в вакууме или в атмосфере аргона в течение 15 минут, затем выдерживали при температуре 1850°С в течение часа. Введение в состав волокон SiC и наночастиц TiN улучшает уплотнение и механические свойства керамики на основе SiC. Относительная плотность керамики на основе SiC увеличилась с 95,8% до 98,1%. Микротвердость была улучшена с 18,19 до 26,65 ГПа для SiC-TiN, значение прочности на изгиб составило от 416 до 1122,81 МПа.

Недостатком данного способа является то, что метод получения данного материала является многостадийным и достаточно сложным, а также получаемые изделия достаточно дорогие, так как для получения композита используется дорогостоящий нанопорошок TiN, а также карбид кремниевые волокна.

Наиболее близким является способ получения электрической и теплопроводной SiC - керамики, с компонентным составом: 94-96 масс. % - β-SiC, 2-4 масс. % - TiN, 2 масс. % - Y2O3 [Kwang Joo Kim, Kwang-Young Lim, Young-Wook Kim, Electrically and thermally conductive SiC ceramics, Journal of the Ceramic Society of Japan 122 [11], pp. 963-966, 2014]. Порошки смешивают в шаровой мельнице в полипропиленовых стаканах в течение 24 часов в среде этанола. Измельченную суспензию сушат, просеивают и подвергают горячему прессованию при 2000°С в течение 3 ч при 40 МПа в среде азота.

К недостаткам получения данного прототипа можно отнести сложность получения исходных материалов и их дороговизна, высокую температуру спекания, а также длительность процесса производства композиционного материала, а именно: измельчение и смешивание компонентов в течение 24 часов,

Задачей изобретения является метод получения композиционного керамического материала обеспечивающего высокие показатели износостойкости с высокими значениями прочности, твердости методом горячего прессования с одновременным азотированием титана.

Техническим результатом предлагаемого изобретения является понижение трудоемкости процесса получения композиционного материала SiC-TiN, уменьшение стоимости конечного изделия из композиционного материала, при сохранении высоких значений прочности, твердости керамического материала SiC-TiN.

Технический результат достигается тем, что в качестве исходных компонентов использованы порошок титана в количестве 5-40 масс. %, порошок карбида кремния в количестве 53-83 масс. % и спекающие добавки Y2O3-Al2O3-ZrO2 или Y2O3-Al2O3(3:5) (YAG) - 7 масс. %, горячее прессование проводится в атмосфере азота при температуре 1600°С в течение 30 минут при давлении 30 МПа, затем температура повышается до 1850°С и выдерживается еще 30 минут, в результате чего происходит совмещение процессов спекания и азотирования.

Сущность изобретения заключается в получении композиционного материала на основе карбида кремния и нитрида титана методом горячего прессования, включающий в себя в качестве исходных компонентов порошок карбида кремния в количестве 53-83 масс. % и спекающие добавки Y2O3-Al2O3-ZrO2 или Y2O3-Al2O3(3:5) (YAG) - 7 масс. %, дополнительно в качестве исходного компонента используется порошок Ti в количестве 5-40 масс. %, горячее прессование проводится в атмосфере азота при температуре 1600°С в течение 30 минут при давлении 30 МПа, затем температура повышается до 1850°С и выдерживается еще 30 минут, в результате чего происходит совмещение процессов спекания и азотирования, а именно получение нитрида титана из порошка титана, который находится в смеси с SiC, и одновременное введение TiN в карбид кремневую матрицу в процессе горячего прессования в среде азота

В отличии от прототипа, для получения композиционного керамического материала используется порошки карбид кремния (<25 мкм), титана (<25 мкм), и в качестве спекающей добавки системы Y2O3-Al2O3-ZrO2 и Y2O3-Al2O3(3:5) (YAG), в массовых соотношениях соответственно: 53-83 масс. %, 5-40 масс. %, 7 масс. %.

В предлагаемом изобретении используется метод горячего прессования с одновременным азотированием титана, который является относительно простым в сравнении с методом горячего изостатического прессования, который используется в прототипе. Метод горячего прессования позволяет получать изделия с плотностью, максимально приближенной к теоретической, а также есть возможность регулирования микроструктуры образцов.

В предлагаемом способе получения композиционного материала, используется метод горячего прессования при давлении 30 МПа, когда как в прототипе для уплотнения образцов используется двух стадийное прессование при давлении 250 МПа, и только лишь потом образцы спекают.

В отличии от прототипа, в предлагаемом изобретении используется титан в чистом виде, а не готовый порошок нитрида титана, что позволяет снизить себестоимость готового изделия.

В предлагаемом изобретении используется порошок титана с размером частиц равным 25 мкм, в прототипах предлагают использовать дорогостоящие нанопорошки нитрида титана.

В отличии от аналога длительность разработанного метода получения композиционного материала значительно меньше.

Пример 1.

Для получения изделий использовали порошок SiC (<25 мкм), порошок Ti (<25 мкм). В качестве спекающей добавки были использованы добавка системы Y2O3-Al2O3-ZrO2, полученная плазмохимическим методом (YAlZr), а также Y2O3-Al2O3(3:5) (YAG). Были подготовлены 5 различных составов, отличающиеся количеством Ti, а также видом спекающей добавки. Составы приведены в Таблице 1 в массовых %. Образцы изготавливаются методом горячего прессования с одновременным азотированием титана.. Технология включает в себя следующие этапы: подготовка исходных порошков, смешивание, высушивание, просеивание, предварительная формовка, обжиг. Обжиг проводится в среде азота в графитовой пресс-форме. Обжиг проводится ступенчато. Первая выдержка проводилась при температуре 1600°С в течение 30 минут. Далее температуры повышалась до 1850°С и проведена вторая выдержка в течение 30 минут. Удельное давление прессования составляло 30 МПа. В процессе горячего прессования, приложенное давление обеспечивает повышенное уплотнение материала.

В начале процесса горячего прессования происходит уплотнение прессованной заготовки под действием приложенного давления и повышенной температуры. Исходный титан равномерно распределен по объему заготовки. Порошок титана во время спекания в среде азота азотируется и при дальнейшем повышении температуры происходит спекание композиционного материала с образованием материала SiC-TiN. Спекание происходит с помощью спекающих добавок. Азотирование титана проходит при температурах близких к 1600°С. Таким образом за один процесс горячего прессования происходит два процесса: азотирование титана и дальнейшее спекание композиционного материала. Это позволяет снизить себестоимость композиционного материала за счет использования более дешевых компонентов.

Полученный материал был исследован. По данным рентгенофазового анализа – Рисунок - 1, полученный материал представлен двумя основными фазами SiC и TiN. Титана в чистом виде, а также карботитана, который мог образовываться во время обжига в графитовой пресс-форме, не обнаружено.

Данные образцы были испытаны на прочность при трехточечном изгибе. Прочность материала составила 340-400 МРа. Микротвердость составила 22,8-34,4 ГПа. Относительная плотность материала составила 0,91-0,97.

Похожие патенты RU2681332C1

название год авторы номер документа
Способ получения горячепрессованной карбидокремниевой керамики 2023
  • Лысенков Антон Сергеевич
  • Фролова Марианна Геннадьевна
  • Каргин Юрий Федорович
  • Ким Константин Александрович
RU2816616C1
Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния 2020
  • Фролова Марианна Геннадьевна
  • Лысенков Антон Сергеевич
  • Каргин Юрий Федорович
  • Ким Константин Александрович
  • Титов Дмитрий Дмитриевич
  • Истомина Елена Иннокентьевна
  • Закоржевский Владимир Вячеславович
RU2744543C1
Способ получения армированного композиционного материала на основе карбида кремния 2022
  • Фролова Марианна Геннадьевна
  • Лысенков Антон Сергеевич
RU2795405C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2013
  • Паутова Юлия Игоревна
  • Маликова Екатерина Владимировна
  • Дитц Александр Андреевич
  • Ревва Инна Борисовна
  • Громов Александр Александрович
RU2524061C1
Способ получения композиционного материала с керамической матрицей и послойной укладкой армирующего компонента в виде ткани карбида кремния 2020
  • Фролова Марианна Геннадьевна
  • Лысенков Антон Сергеевич
  • Каргин Юрий Федорович
  • Ким Константин Александрович
  • Титов Дмитрий Дмитриевич
  • Истомина Елена Иннокентьевна
  • Перевислов Сергей Николаевич
RU2749387C1
УЛЬТРАВЫСОКОТЕМПЕРАТУРНЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Лямин Юрий Борисович
  • Пойлов Владимир Зотович
  • Прямилова Екатерина Николаевна
  • Мали Вячеслав Иосифович
  • Анисимов Александр Георгиевич
RU2588079C1
Способ получения керамического композита на основе нитрид кремния-нитрид титана 2022
  • Ким Константин Александрович
  • Лысенков Антон Сергеевич
  • Каргин Юрий Федорович
  • Фролова Марианна Геннадьевна
  • Федоров Сергей Васильевич
  • Иванников Александр Юрьевич
  • Ивичева Светлана Николаевна
RU2784667C1
СОСТАВ И СПОСОБ СИНТЕЗА СЦИНТИЛЛЯЦИОННОЙ КЕРАМИКИ НА ОСНОВЕ НАНОПОРОШКА 2020
  • Лукьяшин Константин Егорович
  • Ищенко Алексей Владимирович
  • Чепусов Александр Сергеевич
  • Осипов Владимир Васильевич
  • Шитов Владислав Александрович
RU2748274C1
Гетеромодульный керамический композиционный материал и способ его получения 2019
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Бурлаченко Александр Геннадьевич
  • Мировой Юрий Александрович
  • Дедова Елена Сергеевна
RU2725329C1
СИАЛОНСОДЕРЖАЩИЙ МАТЕРИАЛ И КОМПОЗИЦИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ 2007
  • Суворов Станислав Алексеевич
  • Поникаровский Алексей Игоревич
RU2359944C1

Иллюстрации к изобретению RU 2 681 332 C1

Реферат патента 2019 года Способ получения композиционного материала SiC-TiN

Изобретение относится к технической керамике в виде композиционного материала SiC-TiN. Способ включает горячее прессование порошковой смеси. В качестве порошковой смеси используют смесь, содержащую 53-83 мас.% порошка карбида кремния, 5-40 мас.% порошка титана и 7 мас.% порошка спекающей добавки в виде Y2O3-Al2O3-ZrO2 или Y2O3-Al2O3 в соотношении 3:5. В процессе горячего прессования обеспечивают совмещение спекания и азотирования порошковой смеси при температуре 1600°С в атмосфере азота в течение 30 мин при давлении 30 МПа, затем температуру повышают до 1850°С и проводят выдержку 30 мин с получением композиционного материала основными фазами SiC и TiN. Обеспечивается высокая прочность и твердость керамического материала. 1 табл., 1 ил.

Формула изобретения RU 2 681 332 C1

Способ получения композиционного материала SiC-TiN, включающий горячее прессование порошковой смеси, отличающийся тем, что в качестве порошковой смеси используют смесь, содержащую 53-83 мас.% порошка карбида кремния, 5-40 мас.% порошка титана и 7 мас.% порошка спекающей добавки в виде Y2O3-Al2O3-ZrO2 или Y2O3-Al2O3 в соотношении 3:5, при этом в процессе горячего прессования обеспечивают совмещение спекания и азотирования порошковой смеси при температуре 1600°С в атмосфере азота в течение 30 мин при давлении 30 МПа, затем температуру повышают до 1850°С и проводят выдержку 30 мин с получением композиционного материала основными фазами SiC и TiN.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681332C1

Kwang Joo Kim и др
Electrically and thermally conductive SiC ceramics
Journal of the Ceramic Society of Japan, 122, [11], 2014, с.963-966
СПОСОБ ПОЛУЧЕНИЯ БЕЗУСАДОЧНОГО КОНСТРУКЦИОННОГО КЕРАМИЧЕСКОГО ИЗДЕЛИЯ 2008
  • Конаков Владимир Геннадьевич
  • Сударев Анатолий Владимирович
  • Морозов Никита Федорович
  • Овидько Илья Анатольевич
RU2399601C2
СПОСОБ ПОЛУЧЕНИЯ БЕЗУСАДОЧНОГО НАНОМОДИФИЦИРОВАННОГО КОНСТРУКЦИОННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2013
  • Конаков Владимир Геннадьевич
  • Овидько Илья Анатольевич
  • Семенов Борис Николаевич
RU2542073C1
КЕРАМИЧЕСКИЙ МАТЕРИАЛ 1992
  • Максимов А.А.
  • Керимов К.Ш.
  • Вепринцев К.В.
  • Аникин В.Н.
  • Вепринцев В.И.
RU2016879C1
JP 10226578 A, 25.08.1998
JP 5116152 A, 14.05.1993.

RU 2 681 332 C1

Авторы

Леонов Александр Владимирович

Севостьянов Михаил Анатольевич

Лысенков Антон Сергеевич

Царева Алена Михайловна

Насакина Елена Олеговна

Баикин Александр Сергеевич

Сергиенко Константин Владимирович

Колмаков Алексей Георгиевич

Опарина Ирина Борисовна

Даты

2019-03-06Публикация

2018-03-30Подача