Изобретение относится к области практического применения метода ядерного магнитного резонанса (ЯМР) для определения кислотного числа (К.ч.) подсолнечного лецитина и может быть использовано в масложировой промышленности.
Известен способ определения К.ч. растительного масла с практическим применением метода ЯМР, в котором к образцу растительного масла добавляют водный раствор карбоната кальция с концентрацией 1,5 моль/дм3 в соотношении 5:1 по массе, перемешивают полученную смесь до полной нейтрализации свободных жирных кислот (примерно 30 сек), затем смесь, объем которой выбирают из условия максимального заполнения датчика ЯМР-анализатора, при температуре, близкой к комнатной, помещают в датчик ЯМР-анализатора и измеряют ЯМ-релаксационные характеристики протонов смеси, в качестве аналитических параметров используют значения амплитуд сигналов ЯМР и времен спин-спиновой релаксации и по ним вычисляют значение К.ч. масла по градуировочному уравнению зависимости К.ч. масла от разницы амплитуд сигналов свободной прецессии и спинового эха, параметры которого находят при градуировке ЯМР-анализатора по образцам масла с известными значениями К.ч., найденными по стандартной методике (Пат. №2187796 RU, опубл. 20.08.2002, Бюл. №23).
Недостатком этого способа является отсутствие возможности использовать его для определения кислотного числа подсолнечного лецитина.
Известен способ определения К.ч. темноокрашенного растительного масла с практическим применением метода ЯМР: способ включает отбор образца масла, смешивание его с водным раствором щелочного металла с получением смеси, помещение ее в датчик импульсного ЯМР-анализатора, измерение значений амплитуд сигналов ЯМР и вычисление значения кислотного числа по градуировочному уравнению. При этом в качестве водного раствора щелочного металла используют водный раствор гидроксида натрия концентрацией 0,5-0,7 моль/дм3, а смешивание масла с водным раствором гидроксида натрия осуществляют при температуре 20-25°С и соотношении масло - водный раствор гидроксида натрия (1:2)-(1:3) в течение 5-10 сек. Объем смеси, помещаемый в датчик ЯМР-анализатора, соответствует 10 мл (Пат. №2251689 RU, МКИ7 G01N 33/03, опубл. 10.05.2005, Бюл. №13).
Недостатком указанного способа также является отсутствие возможности использовать его для определения кислотного числа подсолнечного лецитина.
Наиболее близким к заявляемому является способ определения кислотного числа лецитина, включающий отбор пробы лецитина, смешивание пробы лецитина с растворителем, представляющим смесь хлороформа и этилового спирта, добавление в полученную смесь фенолфталеина, последующее титрование смеси раствором гидроокиси калия до получения слабо-розового окрашивания и вычисление значения К.ч. по формуле (ГОСТ 32052-2013. Добавки пищевые. Лецитины Е322. Общие технические условия).
Недостатками этого способа являются низкие точность и воспроизводимость результатов анализа, а также достаточно высокое время его реализации и необходимость применения этилового спирта.
Технической проблемой, решаемой заявляемым изобретением, является создание высокоэффективного способа определения К.ч. подсолнечного лецитина, позволяющего повысить точность и воспроизводимость результатов анализа, сократить время реализации анализа и исключить применение этилового спирта.
Техническим результатом заявляемого изобретения является повышение точности и воспроизводимости результатов анализа, сокращение времени реализации анализа и исключение применения этилового спирта.
Технический результат достигается тем, что в способе определения кислотного числа подсолнечного лецитина, включающем отбор пробы подсолнечного лецитина, последовательное смешивание пробы с растворителем и водным раствором щелочи с получением смеси и вычисление значения кислотного числа по формуле, в качестве растворителя используют четыреххлористый углерод при соотношении по массе подсолнечный лецитин - четыреххлористый углерод, равном (1:5)÷(1:5,5), в качестве водного раствора щелочи берут водный раствор гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении по массе подсолнечный лецитин - водный раствор гидроксида натрия, равном (1:0,7)÷(1:0,8), а полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам), при этом для вычисления значения кислотного числа используют формулу в виде уравнения: К.ч.=3,0554+0,9608⋅Ам.
Примеры осуществления заявляемого способа приведены ниже.
Пример 1. Берут 5 г образца подсолнечного лецитина, добавляют к нему 25 г четыреххлористого углерода (соотношение подсолнечный лецитин - четыреххлористый углерод, равное 1:5), перемешивают полученную смесь при температуре 23°С в течение 10 секунд, затем в полученную смесь добавляют 4 г водного раствора гидроксида натрия концентрацией 0,9 моль/дм3 (соотношение подсолнечный лецитин - водный раствор гидроксида натрия, равное 1:0,8), перемешивают полученную смесь в течение 10 секунд. Затем полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам).
Значение кислотного числа подсолнечного лецитина вычисляют по градуировочному уравнению (К.ч.=3,0554+0,9608⋅Ам) зависимости кислотного числа подсолнечного лецитина от амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) (см. чертеж).
Градуировку ЯМР-анализатора осуществляют по образцам подсолнечного лецитина с известными значениями К.ч., найденными по стандартной методике.
Пример 2. Берут 5 г образца подсолнечного лецитина, добавляют к нему 27,5 г четыреххлористого углерода (соотношение подсолнечный лецитин - четыреххлористый углерод, равное 1:5,5), перемешивают полученную смесь при температуре 23°С в течение 10 секунд, затем в полученную смесь добавляют 3,5 г водного раствора гидроксида натрия концентрацией 1,1 моль/дм3 (соотношение подсолнечный лецитин - водный раствор гидроксида натрия, равное 1:0,7), перемешивают полученную смесь в течение 10 секунд. Затем полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам).
Значение кислотного числа подсолнечного лецитина вычисляют по градуировочному уравнению К.ч.=3,0554+0,9608⋅Ам.
В таблице приведены показатели, характеризующие эффективность заявляемого способа по сравнению с известным.
Из данных таблицы видно, что заявляемый способ, по сравнению с известным, характеризуется более высокой точностью и воспроизводимостью результатов анализа, о чем говорят более низкие границы относительной погрешности, а также для его реализации потребуется не более 1 мин.
Кроме того, для реализации заявляемого способа не требуется применение этилового спирта.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ КИСЛОТНОГО ЧИСЛА ЖИДКОГО ЛЕЦИТИНА, ПОЛУЧЕННОГО ИЗ ПОДСОЛНЕЧНОГО МАСЛА ОЛЕИНОВОГО ТИПА | 2021 |
|
RU2760925C1 |
Способ определения кислотного числа рапсового лецитина | 2019 |
|
RU2715480C1 |
Способ определения кислотного числа жидкого соевого лецитина | 2020 |
|
RU2734792C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИСЛОТНОГО ЧИСЛА ТЕМНООКРАШЕННОГО РАСТИТЕЛЬНОГО МАСЛА | 2003 |
|
RU2251689C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИСЛОТНОГО ЧИСЛА РАСТИТЕЛЬНЫХ МАСЕЛ | 2000 |
|
RU2187796C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АЦЕТОННЕРАСТВОРИМЫХ ВЕЩЕСТВ (ФОСФОЛИПИДОВ) В ПОДСОЛНЕЧНОМ ЛЕЦИТИНЕ | 2015 |
|
RU2582912C1 |
ИМИТАТОР СИГНАЛОВ СВОБОДНОЙ ПРЕЦЕССИИ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА И СПИНОВОГО ЭХА ОТ МАСЛА И ФОСФОЛИПИДОВ В ЛЕЦИТИНЕ | 2017 |
|
RU2664883C1 |
Имитатор сигналов свободной прецессии ядерного магнитного резонанса и спинового эха от масла и фосфолипидов в рапсовом лецитине | 2020 |
|
RU2742369C1 |
Имитатор сигналов свободной прецессии ядерного магнитного резонанса и спинового эха от масла и фосфолипидов в соевом лецитине | 2020 |
|
RU2742370C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АЦЕТОННЕРАСТВОРИМЫХ ВЕЩЕСТВ (ФОСФОЛИПИДОВ) В СОЕВОМ ЛЕЦИТИНЕ | 2015 |
|
RU2582913C1 |
Использование: для определения кислотного числа подсолнечного лецитина. Сущность изобретения заключается в том, что осуществляют отбор пробы подсолнечного лецитина, последовательное смешивание пробы с растворителем и водным раствором щелочи с получением смеси и вычисление значения кислотного числа по формуле, при этом в качестве растворителя используют четыреххлористый углерод при соотношении по массе подсолнечный лецитин:четыреххлористый углерод, равном (1:5)÷(1:5,5), в качестве водного раствора щелочи берут водный раствор гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении по массе подсолнечный лецитин:водный раствор гидроксида натрия, равном (1:0,7)÷(1:0,8), а полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам), при этом для вычисления значения кислотного числа используют формулу в виде уравнения: К.ч.=3,0554+0,9608⋅Ам. Технический результат: повышение точности и воспроизводимости результатов анализа, сокращение времени реализации анализа и исключение применения этилового спирта. 1 ил.
Способ определения кислотного числа подсолнечного лецитина, включающий отбор пробы подсолнечного лецитина, последовательное смешивание пробы с растворителем и водным раствором щелочи с получением смеси и вычисление значения кислотного числа по формуле, отличающийся тем, что в качестве растворителя используют четыреххлористый углерод при соотношении по массе подсолнечный лецитин:четыреххлористый углерод, равном (1:5)÷(1:5,5), в качестве водного раствора щелочи берут водный раствор гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении по массе подсолнечный лецитин:водный раствор гидроксида натрия, равном (1:0,7)÷(1:0,8), а полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам), при этом для вычисления значения кислотного числа используют формулу в виде уравнения: К.ч.=3,0554+0,9608⋅Ам.
Электромагнитный измерительный прибор | 1932 |
|
SU32052A1 |
Ледорезный аппарат | 1921 |
|
SU322A1 |
Общие технические условия | |||
СПОСОБ ИДЕНТИФИКАЦИИ ПОДСОЛНЕЧНОГО ЛЕЦИТИНА | 2015 |
|
RU2579536C1 |
СПОСОБ ИДЕНТИФИКАЦИИ СОЕВОГО ЛЕЦИТИНА | 2015 |
|
RU2579534C1 |
СПОСОБ ИДЕНТИФИКАЦИИ РАПСОВОГО ЛЕЦИТИНА | 2015 |
|
RU2581452C1 |
МНОГОФАЗНЫЙ ГЕНЕРАТОР РЕГУЛИРУЕМОЙ ЧАСТОТЫи АМПЛИТУДЫ | 0 |
|
SU192908A1 |
WO 9954751A1, 28.10.1999. |
Авторы
Даты
2019-05-30—Публикация
2018-07-25—Подача