Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации Российский патент 2019 года по МПК B01J38/62 B01J38/52 B01J38/56 C10G45/08 B01J23/94 

Описание патента на изобретение RU2691078C2

Изобретение относится к способу подготовки к окислительной регенерации катализаторов гидрогенизационных процессов, содержащих оксид металла группы VIB и оксид металла группы VIII и может найти применение в нефтеперерабатывающей промышленности.

В нефтеперерабатывающей промышленности используется окислительная регенерация катализаторов как без извлечения катализатора из реактора (insitu), так и вне реактора exsitu. До начала 2000-х годов на заводах практически всегда осуществлялась окислительная регенерация в том же реакторе, в котором проводился процесс гидроочистки. Основные недостатки такого способа регенерации - невозможность поддержания условий (температуры, состава газовой среды) во всем объеме катализатора. Избыточная температура при регенерации в реакторе - наиболее распространенная причина необратимого разрушения катализатора, а иногда и реактора. Заметная потеря катализатором стойкости к раздавливанию происходит при регенерации катализатора при температурах выше 650°С. При температурах выше 815°С происходит частичное образование α-Аl2О3, резко снижается и активность, и прочность на раздавливание. Изменяется пористая структура катализатора: снижается площадь поверхности и объем пор. Выше 700°С может происходить сублимация молибдена в виде МoО3, которая обнаруживается по появлению серебристых игольчатых кристаллов на холодных участках слоя катализатора, на фарфоровых шарах и т.д. Выше 540°С могут образовываться каталитически неактивные шпинели NiAl2O4, а выше 650°С - СоАl2O4.

Современные катализаторы гидроочистки должны обладать высокой каталитической активностью. Для получения моторных топлив, удовлетворяющих требованиям стандартов Евро-4 или Евро-5, необходимо удаление более чем 99.8% всех сернистых соединений. Технологии регенерации катализаторов insitu из-за перечисленных выше недостатков не позволяют восстановить активность катализаторов до уровня выше 80%, что необходимо для достижения указанного качества гидрогенизатов.

В связи с этим в нефтепереработке стали применяться методы регенерации катализаторов exsitu (вне реактора). В этом случае катализатор выгружается из реактора и затаривается в бочки. Для осуществления этой операции от катализатора отпаривают остатки сырья и производят его пассивацию. Пассивация катализатора заключается в окислении в мягких условиях легковоспламеняющихся на воздухе соединений, содержащихся в катализаторе, после чего катализатор практически теряет свои пирофорные свойства. Технически пассивация катализатора осуществляется путем продувки катализатора азотом с низкой объемной долей кислорода в течение 20-24 часов при температуре 180°С. Однако остатки сырья удаляются не полностью. Об этом можно судить по кривым ДТА-ТГА, на которых наблюдается существенное уменьшение массы пассивированного катализатора гидроочисткикак дизельных фракций, так и вакуумных газойлей при нагревании образца в инертной среде при температурах выше 200°С. Далее катализатор транспортируется на специальное предприятие, где происходит его окислительная регенерация.

Подготовка катализаторов гидрогенизационных процессов к окислительной регенерации заключается в 1) обработке растворителем для удаления остатков сырья; 2) извлечении тяжелых металлов (Fe, V, Ni), которые в виде сульфидов остаются на поверхности катализатора после окончания цикла, комплексообразователями. Удаление остатков сырья и извлечение тяжелых металлов можно осуществить в одну стадию путем обработки катализатора смесью растворителя и комплексообразователя.

Описан «Способ активации катализатора гидроочистки» RU 2351634 С2, который включает контактирование катализатора с кислотой и органической добавкой. Данный способ имеет недостатки, т.к. контактирование катализатора проводится уже после термической стадии обработки закоксованного катализатора. Это приводит к тому, что для металлов-загрязнителей при повышенной температуре происходит формирование устойчивых фаз, в том числе типа шпинелей и молибдатов. Как следствие удаление этих примесей после прокаливания не может быть проведено достаточно глубоко, это приводит к их участию в цикле повторного использования катализатора, что меняет его химический состав и может, в конечном счете, приводить к более интенсивному их закоксовыванию и преждевременной дезактивации.

Наиболее близким к предлагаемому является способ удаления загрязняющих тяжелых металлов, описанный в [M. Marafi, A. Stanislaus, Е. Furimsky. Handbook of spent hydroprocessing catalysts. Elsevier, 2010. P. 203-207]. Описанный способ предполагает контактирование катализатора до термической стадии регенерации с водным раствором, содержащим комплексообразователь (щавелевую кислоту) и пероксид водорода. Описанный способ имеет следующие недостатки: при подготовке катализатора к регенерации используется водный раствор комплексообразователя, включающий в свой состав, в том числе, перекись водорода, что формирует поток эмульсии «экстрагированные углеводороды - вода - комплексное соединение металла - перекись водорода». Дальнейшая переработка такого потока связана с необходимостью его разделения и осушки углеводородной фазы. Выделение металлов из раствора осложнено наличием неразложившейся перекиси водорода. Использование самой перекиси удорожает процесс, требует применения более дорого оборудования и систем контроля и безопасности на производстве, специального оборудования для транспорта и хранения перекиси водорода. Отличие предлагаемого решения заключается в двух моментах: экстрагирующие металлы-загрязнители агенты смешаны с углеводородными растворителями для удаления остатков сырья, т.е. отмывка от остатков продуктов и удаление загрязняющих примесей металлов происходят одновременно; при обработке не используется перекись водорода. Регенерация использованного раствора осуществляется путем пропускания раствора через слой крошки катализаторов гидрогенизационных процессов, полученной при рассеве прокаленного катализатора.

Технический результат достигается в способе подготовки катализаторов гидрогенизационных процессов к окислительной регенерации путем обработки пассивированного сульфидного катализатора смесью, в которой растворен комплексообразователь, причем используется смесь бутилцеллозольва и нефраса в массовых соотношениях от 10:90 до 90:10, а в качестве комплексообразователя используется щавелевая, или винная, или лимонная кислоты, при этом концентрация комплексообразователя составляет от 1 до 4% масс., степень извлечения составляет не менее 30% отн., степень извлечения V составляет не менее 40% отн., степень извлечения Fe составляет не менее 25% отн. Способ регенерации раствора комплексообразователя путем его пропускания через слой крошки катализаторов гидрогенизационных процессов, полученной при рассеве катализаторов, прокаленных при 500°С, для регенерации раствора использован Со-Мо/Аl2О3 катализатор гидроочистки дизельного топлива, степень извлечения NiO из регенерируемого раствора составляет не менее 92% отн., степень извлечения V2O5 из регенерируемого раствора составляет не менее 91% отн., степень извлечения Fe3O4 из регенерируемого раствора составляет не менее 89% отн.

Результат достигается при одновременной экстракцииостатков сырья, т.е. отмывки от остатков продуктов и удаления загрязняющих примесей (металлов) с помощью раствора нефраса и бутилцеллозольва (БЦЗ) в соотношениях от 90:10 до 10:90 (по массе) и комплексообразователя, выбранного из щавелевой, винной или лимонной кислот, взятый в количестве от 1 до 4% масс. на раствор. Изобретение включает так же способ регенерации полученного раствора путем контактирования полученного раствора с крошкой Со-Мо/Аl2О3 катализатора гидроочистки дизельного топлива, полученной при рассеве регенерированного катализатора.

Для испытания предложенных технических решений был использован промышленные катализаторы гидроочистки дизельных фракций и вакуумного газойля, пассивированные в реакторах. Характеристика катализаторов приведена в табл. 1.

Состав раствора для обработки катализаторов и содержание загрязнителей после обработки приведены в табл. 2.

В таблице 3 приведены результаты регенерации промывного раствора, которая оценивалась по снижению концентрации загрязняющих металлов. Свежий раствор не содержит V, Niи Fe.

Пример 1.

В обработку взято по 1 кг закоксованных катализаторов гидроочистки дизельных фракций и вакуумного газойля. Обработку каждого из них, выполняли 3 кг раствора, содержащего БЦЗ и нефрас в соотношении 10:90 (по массе) и щавелевую кислоту в концентрации 1% масс. на раствор.

В результате обработки закоксованного катализатора гидроочистки дизельных фракций получили 2,5 кг раствора, содержащего 0,8 мг/(кг раствора) Fе3О4. Сушку подготовленного катализатора выполняли при 200°С, после чего в образце найдено содержание углерода, равное 5,1% масс. и содержание оксида металла соответственно 3 ppmFe3O4. Полученный раствор, массой 2,5 кг, контактировали с 1 кг крошки Со-Мо/Аl2О3 катализатора гидроочистки дизельного топлива. В результате контактирования полученный раствор, массой 2,0 кг содержал 0,1 мг/(кг раствора) Fe3O4. Степень извлечения оксида металла из катализаора составила 40%. Степень извлечения оксида металла из раствора рассчитывали, принимая во внимание возвращение в процесс растворителя после сушки крошки. Степень извлечения оксида металла из раствора составила 90,0% отн.

В результате обработки закоксованного катализатора гидроочистки вакуумного газойля получили 2,4 кг раствора, содержащего 9,6 мг/(кг раствора) V2O5, 8,3 мг/(кг раствора) NiO, 56,3 мг/(кг раствора) Fe3O4. Сушку подготовленного катализатора выполняли при 200°С, после чего в образце найдено содержание углерода, равное 11,3% масс. и содержание оксидов металлов соответственно 25 ppm на V2O5, 40 ppm на NiO, 395 ppm на Fe3O4. Полученный раствор, массой 2,4 кг, контактировали с 1 кг крошки Со-Мо/Аl2О3 катализатора гидроочистки дизельного топлива. В результате контактирования полученный раствор, массой 1,9 кг содержал 0,9 мг/(кг раствора) V2O5, 0,8 мг/(кг раствора) NiO, 5,6 мг/(кг раствора) Fe3O4.

Степени извлечения оксидов металлов из катализатора составили: 66% отн. на V2O5, 33% отн. на NiO, 27% отн. на Fe3O4.

Степени извлечения оксидов металлов из раствора рассчитывали, принимая во внимание возвращение в процесс растворителя после сушки крошки. Степень извлечения оксида металла из раствора составила: 92,6% отн. на V2O5, 92,4% отн. на NiO, 92,1% отн. на Fe3O4.

Примеры 2-9.

Аналогично примеру 1. Сведения о составах свежих растворов и составах подготовленных катализаторов представлены в табл. 2. Сведения о массах и составах полученных при обработке катализатора и пропускании через катализаторную крошку растворов (регенерированных растворах) и степенях извлечения металлов из растворов представлены в таблице 3.

Похожие патенты RU2691078C2

название год авторы номер документа
КАТАЛИЗАТОР, СПОСОБ ПРИГОТОВЛЕНИЯ НОСИТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2015
  • Пимерзин Андрей Алексеевич
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Никульшин Павел Анатольевич
  • Пимерзин Алексей Андреевич
RU2639159C2
КАТАЛИЗАТОР ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2015
  • Пимерзин Андрей Алексеевич
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Моисеев Алексей Вячеславович
RU2631424C2
Состав и способ приготовления катализаторов гидроочистки смеси дизельных фракций 2016
  • Томина Наталья Николаевна
  • Пимерзин Андрей Алексеевич
  • Максимов Николай Михайлович
  • Моисеев Алексей Вячеславович
RU2700712C2
Способ реактивации катализатора гидроочистки дизельного топлива 2020
  • Гусева Алёна Игоревна
  • Болдушевский Роман Эдуардович
  • Юсовский Алексей Вячеславович
  • Никульшин Павел Анатольевич
  • Пимерзин Алексей Андреевич
  • Пимерзин Андрей Алексеевич
RU2758845C1
КОМПЛЕКСНЫЙ СПОСОБ ВОССТАНОВЛЕНИЯ АКТИВНОСТИ КАТАЛИЗАТОРОВ ГИДРОПРОЦЕССОВ 2020
  • Логинов Сергей Александрович
  • Талисман Елена Львовна
  • Шандрик Иван Васильевич
  • Грушевский Сергей Елизарович
RU2748975C1
Состав и способ приготовления катализаторов гидроочистки дизельных фракций 2016
  • Максимов Николай Михайлович
  • Пимерзин Андрей Алексеевич
  • Томина Наталья Николаевна
  • Роганов Андрей Александрович
RU2700713C2
Катализатор глубокой гидроочистки вакуумного газойля и способ его приготовления 2017
  • Томина Наталья Николаевна
  • Пимерзин Андрей Алексеевич
  • Можаев Александр Владимирович
  • Никульшина Мария Сергеевна
  • Минаев Павел Петрович
  • Никульшин Павел Анатольевич
RU2694370C2
КАТАЛИЗАТОР ЗАЩИТНОГО СЛОЯ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 2018
  • Пимерзин Андрей Алексеевич
  • Максимов Николай Михайлович
  • Томина Наталья Николаевна
  • Можаев Александр Владимирович
  • Солманов Павел Сергеевич
  • Пимерзин Алексей Андреевич
  • Никульшин Павел Анатольевич
  • Минаев Павел Петрович
  • Гуляева Людмила Алексеевна
  • Шмелькова Ольга Ивановна
  • Болдушевский Роман Эдуардович
RU2699225C1
Способ совместной гидропереработки растительного и нефтяного сырья 2019
  • Томина Наталья Николаевна
  • Ишутенко Дарья Игоревна
  • Варакин Андрей Николаевич
  • Коклюхин Александр Сергеевич
  • Можаев Александр Владимирович
  • Пимерзин Андрей Алексеевич
  • Никульшин Павел Анатольевич
RU2726616C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2008
  • Пимерзин Андрей Алексеевич
  • Томина Наталья Николаевна
  • Цветков Виктор Сергеевич
  • Коновалов Виктор Викторович
  • Климочкин Юрий Николаевич
RU2414963C2

Реферат патента 2019 года Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации

Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, V2O5, Fe3O4, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или лимонной кислоты. Также изобретение относится к способу регенерации раствора комплексообразователя, полученного после осуществления способа обработки пассивированного сульфидного катализатора. Технический результат заключается в увеличении каталитической активности. 2 н. и 6 з.п. ф-лы, 3 табл., 9 пр.

Формула изобретения RU 2 691 078 C2

1. Способ подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, V2O5, Fe3O4, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или лимонной кислоты.

2. Способ по п. 1, отличающийся тем, что используется смесь бутилцеллозольва и нефраса в соотношения от 10:90 до 90:10 по массе.

3. Способ по п. 1, отличающийся тем, что в качестве комплексообразователя используется щавелевая, или винная, или лимонная кислота.

4. Способ по п. 3, отличающийся тем, что концентрация комплексообразователя составляет от 1 до 4% масс.

5. Способ по п. 3, отличающийся тем, что степень извлечения NiO составляет не менее 30% отн., степень извлечения V2O5 составляет не менее 40% отн., степень извлечения Fe3O4 составляет не менее 25% отн.

6. Способ регенерации раствора комплексообразователя, полученного после осуществления способа обработки пассивированного сульфидного катализатора, содержащего NiO, V2O5, Fe3O4, по п. 1, путем его пропускания через слой крошки катализатора гидроочистки Со-Мо/Al2O3, полученной при рассеве катализаторов, прокаленных при 500°С.

7. Способ по п. 6, отличающийся тем, что для регенерации раствора использован Со-Мо/Al2O3 катализатор гидроочистки дизельного топлива.

8. Способ по п. 7, отличающийся тем, что степень извлечения NiO из регенерируемого раствора составляет не менее 92% отн., степень извлечения V2O5 из регенерируемого раствора составляет не менее 91% отн., степень извлечения Fe3O4 из регенерируемого раствора составляет не менее 89% отн.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691078C2

Способ регенерации дезактивированного катализатора гидроочистки 2016
  • Будуква Сергей Викторович
  • Климов Олег Владимирович
  • Загоруйко Андрей Николаевич
  • Носков Александр Степанович
RU2627498C1
US 20170036196 А1, 09.02.2017
MARAFI M
et al
Handbook of spent hydroprocessing catalysts, Elsevier, 2010, p.p.201-207
СПОСОБ АКТИВАЦИИ КАТАЛИЗАТОРА ГИДРООЧИСТКИ 2004
  • Янсен Марсел Адриан
  • Ван Хаутерт Францискус Вильхельмус
  • Адо Тосиюки
  • Камо Тецуро
  • Нисимото Наохиро
RU2351634C2

RU 2 691 078 C2

Авторы

Пимерзин Андрей Алексеевич

Никульшин Павел Анатольевич

Томина Наталья Николаевна

Максимов Николай Михайлович

Пимерзин Алексей Андреевич

Даты

2019-06-10Публикация

2017-10-20Подача