Способ 3D печати на оборудовании с ЧПУ с интеллектуальной оптимизацией режимов Российский патент 2019 года по МПК B33Y10/00 B22F3/00 

Описание патента на изобретение RU2696121C1

Изобретение относится к способу изготовления объемных деталей и конструкций.

Из уровня техники известен способ создания трехмерных объектов с использованием электродуговой наплавки в среде защитных газов, патент: EP 1354658 А2. Формирование объекта по указанному патенту происходит за счет создания слоев состоящих из соприкасающихся друг с другом наплавленных валиков металла. Каждый последующий слой формируется на поверхности предыдущего слоя, кроме первого слоя, который осаждается на подложку или часть изделия, закрепленную на столе. Перемещение сварочной горелки и / или движения стола управляются с помощью системы с числовым программным управлением (ЧПУ).

К числу недостатков известного из уровня техники изобретения следует отнести: низкую размерную точность и низкое качество шероховатости поверхности формируемых объектов, ввиду отсутствия чистовой механической обработки, а так же отсутствие модулей высокопроизводительных вычислений технологии nVidia CUDA или её аналогов и глубокого обучения нейронных сетей для контроля и анализа параметров наплавки с целью корректировки режимов в процессе наплавки для улучшения качества металлической структуры формируемого объекта.

Так же из уровня техники известно устройство создания трехмерных объектов с использованием электродуговой наплавки, обработки резанием, лазерной обработки и др. на металлорежущем станке с ЧПУ по патенту WO 2014013247 А1. Данное устройство формирует в рабочей зоне станка заготовку посредством электродуговой наплавки, после чего выполняет чистовую механическую обработку напечатанного объекта посредством удаления излишков металла с использованием лезвийного инструмента. Все движения узлов станка согласуются и управляются с помощью системы ЧПУ.

К числу недостатков известного из уровня техники изобретения следует отнести: отсутствие у устройства систем диагностики и корректировки режимов при процессе формирования и дальнейшей обработки объекта в частности отсутствует аппаратное и программное обеспечение для выполнения этих функций. Так же устройство не включает в себя модули высокопроизводительных вычислений технологии nVidia CUDA или её аналогов и глубокого обучения нейронных сетей для анализа данных с целью поиска оптимального режима работы.

При этом из уровня техники известны способы диагностики сварных соединений и наплавленных объектов:

По патенту RU2312745C2 описан способ «текущего контроля зоны сварки изделия в процессе сварки, при осуществлении которого зону сварки освещают ультрафиолетовым излучением с получением изображения зоны сварки, при этом излучение, исходящее от зоны сварки в направлении устройства для получения изображения, подвергают фильтрации, отличающийся тем, что для фильтрации используют полосовой фильтр, пропускающий излучение вблизи определенной длины волны, лежащей в ультрафиолетовом диапазоне длин волн». При этом изображения сварочной ванны, полученные во время наплавки, обрабатываются и анализируются и сравниваются с эталонными изображениями. На основании полученной информации принимается решение по регулировке одного или нескольких параметров. 

К числу недостатков известного из уровня техники изобретения следует отнести: не ясность механизма регулировки режимов наплавки, а именно посредством чего происходит регулировка режимов. Так же способ не включает в себя модули высокопроизводительных вычислений технологии nVidia CUDA или её аналогов и глубокого обучения нейронных сетей для анализа изображения с целью поиска оптимального режима работы.

Помимо описанного выше способа известен способ обнаружения в процессе сварки дефектов в сварных швах и определения их местоположения по акустическим сигналам по патенту RU2424510C2. Способ включает в себя: «прием возникающих в зоне сварки и остывания акустических сигналов размещенными на свариваемой конструкции вдоль сварного шва широкополосными акустическими преобразователями, их фильтрацию по величине заданной пиковой амплитуды, аналого-цифровое преобразование, регистрацию времен прихода сигналов акустической эмиссии на акустические преобразователи, вычисление координат источников акустических сигналов, по результатам акустико-эмиссионного контроля строят картину локализации в зоне сварки и остывания, после анализа которой судят о качестве сварного шва и о степени опасности обнаруженных в нем дефектов».

К числу недостатков известного из уровня техники изобретения следует отнести: не способность предложенной системы вносить изменения в режимы сварки или наплавки в процессе выполнения операции по сварке или наплавке. Так же способ не включает в себя модули высокопроизводительных вычислений технологии nVidia CUDA или её аналогов и глубокого обучения нейронных сетей для анализа данных акустической эмиссии с целью поиска оптимального режима работы.

Из уровня техники известен способ автоматического регулирования глубины проплавления при автоматической дуговой сварке по патенту RU 2613255 C1. В котором описан способ, где задаются эталонные значения параметра сварки из группы, включающей ток сварки, скорость сварки и напряжение сварки, вычисление расчетного значения температуры заданной точки поверхности изделия и измерение в процессе сварки температуры заданной точки поверхности изделия, после чего вычисляется разность между текущими и заданными параметрами на основе которых ведут регулирование процесса по полученным разностям.

К числу недостатков известного из уровня техники изобретения следует отнести то, что способ не включает в себя другие факторы способные влиять на процесс наплавки такие как: воздействие атмосферы или защитного газа на зону наплавки, расстояние сварочной горелки от сварочной ванны. Так же способ не включает в себя модули высокопроизводительных вычислений технологии nVidia CUDA или её аналогов и глубокого обучения нейронных сетей для анализа данных с целью поиска оптимального режима работы.

Задачей изобретения является повышение качества металлической структуры изделий из металлов, напечатанных по технологии электродуговой наплавки в среде защитных газов, а так же совершенствование системы управления 3D печатью и оптимизация режимов.

Технический результат предлагаемого изобретения заключается в расширении технологических возможностей способа 3D печати электродуговой наплавкой на оборудовании с ЧПУ.

Технический результат достигается тем, что в оборудование с ЧПУ реализующее способ 3D печати электродуговой наплавкой встраивается система состоящая из комплекса датчиков и другой фиксирующей аппаратуры: это система визуального контроля зоны наплавки изделия в процессе формирования объекта, при осуществлении которого зону наплавки освещают ультрафиолетовым излучением с получением изображения зоны наплавки, при этом излучение, исходящее от зоны наплавки в направлении устройства для получения изображения, подвергают фильтрации; система фиксации акустических сигналов в процессе наплавки; лазерная система измерения температуры сварочной ванны; система измерения используемого в процессе дуговой сварки защитного газа; система собирающая данные о самом оборудовании с ЧПУ, в частности о скорости перемещения сварочной горелки, скорости перемотки проволоки; система собирающая данные о токе, величине и частоте сварочных импульсов. Вся перечисленная фиксирующая аппаратура объединена в единую систему, которая через аналого-цифровые преобразователи связна с модулями высокопроизводительных вычислений технологии nVidia CUDA или её аналогов и глубокого обучения нейронных сетей c обеспечением обратной связи для оптимизации режимов электродуговой наплавки в процессе 3D печати. В свою очередь описанная система связана с системой ЧПУ оборудования.

Данная система позволяет комплексно оптимизировать режимы наплавки в процессе 3D печати на оборудовании с ЧПУ, принципиальная схема её функционирования представлена на фиг. 1.

Предлагаемый способ реализуется следующим образом: Механические части оборудования с ЧПУ подводят печатающую головку – 1 на требуемое расстояние от подложки – 2, при команде начала печати, которая поступает от системы ЧПУ – 3 оборудования через печатающую головку в зону наплавки начинают поступать проволока – 4 и защитный газ – 5, так же включается генератор сварочных импульсов – 6, который разжигает электрическую дугу между подложкой и проволокой, посредством которой проволока плавится и формирует изделие – 7 на подложке. При этом на протяжении всего процесса формирования объекта функционирует система оптимизации режимов 3D печати, которая работает следующим образом: видеодатчик – 8 собирает информацию о расстоянии между формируемым слоем и торцем сварочной горелки, данные о ширине и длине сварочной ванны; датчик АЭ – 9 регистрирует сигналы как при печатании детали, так и при ее остывании; система измерения температуры – 10, за счет обработки лазерного излучения подаваемого в сварочную ванну, регистрирует температуру наплавки; датчик подачи защитного газа – 11 собирает данные о поступлении защитного газа в зону печати и его концентрации; датчики скорости – 12 передают данные о скорости подачи проволоки и скорости перемещения печатающей головки вдоль формируемого слоя; датчик контроля наличия проволоки – 13 передает данные о наличии проволоки в зоне наплавки и оставшемся её количестве; датчик контроля тока и напряжения – 14 собирает данные о величине сварочного тока и напряжения, величине и продолжительности сварочных импульсов.

Все сигналы с датчиков проходят через аналогово-цифровые преобразователи – 15, где преобразуются в цифровой сигнал и передаются в нейромодуль – 16. В нейромодуле с помощью управляющего микроконтроллера – 17 и нейроморфного процессора – 18 проходит обработка всей полученной информации и вычисления с целью принятия решения для оптимизации процесса 3D печати и передачи команд на исполнительные органы через систему ЧПУ – 3 оборудования. Все данные поступают на хранение в облако – 19 или отдельное серверное хранилище – 20. Входными параметрами для системы являются следующие данные:

- расстояние между формируемым слоем и торцем печатающей головки;

- данные о ширине и длине сварочной ванны;

- данные о величине и продолжительности сварочных импульсов;

- данные о поступлении защитного газа в зону печати;

- текущее положение печатающей головки по оси Z;

- данные о наличии проволоки и оставшемся её количестве;

- информация о текущей скорости перемещения печатающей головки;

- информация о текущей скорости подачи проволоки;

- данные о температуре в зоне наплавки;

- акустические сигналы процесса наплавки

На основании указанных данных самообучающаяся нейронная сеть может принимать решение о корректировке режимов наплавки автономно без участия человека отдавать команды на изменение параметров следующим исполнительным органам:

- генератор импульсов сварочного тока;

- механизм подачи проволоки;

- механические части оборудования с ЧПУ, отвечающие за положение сварочной горелки по оси Z;

- механические части оборудования с ЧПУ отвечающие за скорость перемещения;

- электрическая схема оборудования с ЧПУ отвечающая за включение и регулировку величины сварочного тока и напряжения, подачу проволоки и защитного газа.

Все исполнительные органы оборудования напрямую связаны с системой ЧПУ станка (сетевое взаимодействие). Исходя из полученных данных, нейромодуль может отдавать команды системе ЧПУ на подъем или опускание печатающей головки к зоне наплавки, увеличение или уменьшение скорости подачи проволоки и скорости перемещения печатающей головки вдоль формируемого слоя, корректировать величину и частоту сварочных импульсов и величину тока и напряжения, изменять объем и концентрацию подаваемого защитного газа, тем самым добиваясь оптимальных режимов 3D печати со стабильными размерами формируемой заготовки и структуры металла. При этом если в оборудовании не будет хватать расходных компонентов и энергии для качественной печати, то система на основании датчиков отдаст команду на остановку печати с выдачей сообщения о требовании добавить в оборудование недостающий компонент.

Основной нейромодуль 16 представляет собой связку управляющего микроконтроллера 17 и нейроморфного процессора 18 и обеспечивает формирование задающего воздействия для системы управления оборудованием с ЧПУ. На входной слой нейроморфного процессора поступает оцифрованный сигнал с комплекса датчиков и другой фиксирующей аппаратуры описанной выше, в частности текущее значение фрактальной размерности сигнала АЭ. На основе входных данных нейроморфного процессора формирует определенное состояние выходных нейронов, которые определяют вектор состояния для задающего воздействия. Т.к. нейроморфный процессор встроен в контур обратной связи с оборудованием с ЧПУ, то у системы появляется возможность самоадаптации к оптимальным режимам печати. Одним из критериев оптимальности берется значение фрактальной размерности аттартктора сигнала АЭ. В процессе работы все сигналы с датчика АЭ оцифровываются и отправляются в облако на хранение и последующие переобучение нейронной сети. Тем самым подобные системы могут накапливать опыт и обмениваться им между аналогичными системами. В состав также входит дополнительный нейрочип – 21, обученный для выявления типовых дефектов наплавки. Для повышения точности определения фрактальной размерности DF аттрактора сигнала АЭ, используются специальные wavelet фильтры, позволяющие убрать шумовую составляющую на основе декомпозиции сигнала на разных уровнях, на полезную и вредную составляющую.

На фиг. 2 приведены аттракторы сигналов АЭ при различных режимах наплавки, т.е. при оптимальном (устойчивом) (фиг. 2а) и неустойчивом процессе наплавки (фиг. 2б). Данные аттракторы были получены при наплавке сталью 08Г2С в среде защитных газов. При обучении нейронной сети был проведен ряд пробных наплавок на различных режимах и в разных условиях, которые приведены в таблице 1.

Таблица 1

Ток, А Напряжение, В Зазор горелка –подложка, мм 1 161 21 11 2 152 22 11 3 158 24 11 4 160 24 11 5 160 24 11 6 120 20 11 7 72 19 11 8 102 24 20 9 20 35 20 10 180 20 5 11 30 34 5

При этом при выставлении любого начального режима система в дальнейшем самостоятельно подбирала оптимальный режим наплавки исходя из текущих условий. Посредством обратной связи воздействуя на исполнительные органы перечисленные выше. В частности на прмере наплавки стали 08Г2С система после обучения самостоятельно нашла оптимальный режим, им стал режим с параметрами: 161А, 21В, зазор 11 мм (см. таблицу 1).

Таким образом, расширены технологические возможности способа 3D печати электродуговой наплавкой на оборудовании с ЧПУ, реализован процесс определения и назначения оптимальных режимов 3D печати для получения наилучшего качества напечатанных заготовок и минимизации производственного брака.

Похожие патенты RU2696121C1

название год авторы номер документа
Способ аддитивного производства металлических изделий с автоматической регулировкой режимов послойной электродуговой наплавки 2023
  • Какорин Даниил Дмитриевич
  • Лаврентьев Алексей Юрьевич
RU2807572C1
Модульная система 3D-печати слоистыми композиционными металлами для станков с ЧПУ с функцией быстросменности и бесподналадочности наплавляемого материала 2023
  • Кабалдин Юрий Георгиевич
  • Шатагин Дмитрий Александрович
  • Желонкин Максим Викторович
  • Клочкова Наталья Сергеевна
  • Давыдов Алексей Максимович
RU2807114C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА ЭЛЕКТРОДУГОВОЙ СВАРКИ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Владимиров Андрей Викторович
RU2802922C2
Способ оценки основного параметра, определяющего уровень и характер нагрузки при диагностике особо ответственных узлов транспортных средств 2015
  • Кабалдин Юрий Георгиевич
  • Лаптев Игорь Леонидович
  • Шатагин Дмитрий Александрович
  • Сидоренков Дмитрий Альбертович
  • Аносов Максим Сергеевич
  • Кузьмишина Анастасия Михайловна
RU2614740C1
СПОСОБ 3D ПЕЧАТИ СЕКЦИОНИРОВАННОЙ ПРОВОЛОКОЙ 2018
  • Кривенко Александр Сергеевич
  • Копейкин Алексей Викторович
RU2691017C1
Способ оценки характера излома металла с использованием нейросетевой классификации и фрактального анализа 2021
  • Аносов Максим Сергеевич
  • Кабалдин Юрий Георгиевич
  • Шатагин Дмитрий Александрович
  • Рябов Дмитрий Александрович
  • Колчин Павел Владимирович
RU2780295C1
Способ аддитивного производства металлических изделий 2022
  • Какорин Даниил Дмитриевич
  • Лаврентьев Алексей Юрьевич
RU2781510C1
АДАПТИВНОЕ УПРАВЛЕНИЕ ПРОЦЕССАМИ АДДИТИВНОГО ПРОИЗВОДСТВА В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ С ИСПОЛЬЗОВАНИЕМ МАШИННОГО ОБУЧЕНИЯ 2018
  • Мехр, Эдвард
  • Эллис, Тим
  • Нун, Джордан
RU2722525C1
Способ создания металлических деталей, в котором используется осаждение материала, и устройство для осуществления этого способа 2016
  • Смолик Ян
  • Дивис Иван
  • Формусек Томас
  • Комарек Франтисек
  • Малы Ян
  • Хоснедл Станислав
RU2723496C2
Способ двухэлектродной дуговой наплавки 2021
  • Елсуков Сергей Константинович
  • Зорин Илья Васильевич
  • Лысак Владимир Ильич
  • Фастов Сергей Анатольевич
  • Красиков Павел Павлович
RU2767334C1

Иллюстрации к изобретению RU 2 696 121 C1

Реферат патента 2019 года Способ 3D печати на оборудовании с ЧПУ с интеллектуальной оптимизацией режимов

Изобретение относится к способу изготовления изделия путем трехмерной печати электродуговой наплавкой на оборудовании с ЧПУ. Способ включает формирование заготовки электродуговой наплавкой в среде защитных газов из слоев, состоящих из соприкасающихся друг с другом наплавленных валиков металла, и выполнение чистовой механической обработки сформированной заготовки путем удаления излишков металла с использованием лезвийного инструмента. Всеми движениями узлов оборудования согласованно управляют посредством системы ЧПУ. ЧПУ включает управляющую программу, содержащую заданные режимы наплавки для формирования заготовки. Данные процесса трехмерной печати при формировании заготовки фиксируют с помощью комплекса фиксирующей аппаратуры, содержащего систему визуального контроля зоны наплавки заготовки, выполненную с возможностью освещения зоны наплавки ультрафиолетовым излучением, фильтрации излучения, исходящего от зоны наплавки, и получения изображения зоны наплавки, систему фиксации акустических сигналов от формируемой заготовки, лазерную систему измерения температуры сварочной ванны, систему контроля подачи защитного газа и его концентрации в зоне печати, систему измерения скорости перемещения сварочной горелки и скорости перемотки наплавочной проволоки и систему измерения тока, величины и частоты сварочных импульсов, который выполнен в виде единой системы, связанной через аналого-цифровые преобразователи с системой ЧПУ посредством встроенных модулей высокопроизводительных вычислений по технологии nVidia CUDA или её аналогов и нейронной сети глубокого обучения, обеспечивающих обратную связь для оптимизации режимов электродуговой наплавки в процессе трехмерной печати. Упомянутую нейронную сеть выполняют с возможностью автономного принятия решения об оптимизации режимов наплавки и формирования команд на изменение параметров оборудования с ЧПУ. 2 ил., 1 табл.

Формула изобретения RU 2 696 121 C1

Способ изготовления изделия путем трехмерной печати электродуговой наплавкой на оборудовании с ЧПУ, включающий формирование заготовки электродуговой наплавкой в среде защитных газов из слоев, состоящих из соприкасающихся друг с другом наплавленных валиков металла, и выполнение чистовой механической обработки сформированной заготовки путем удаления излишков металла с использованием лезвийного инструмента, при этом всеми движениями узлов оборудования согласованно управляют посредством системы ЧПУ, включающей управляющую программу, содержащую заданные режимы наплавки для формирования заготовки, отличающийся тем, что данные процесса трехмерной печати при формировании заготовки фиксируют с помощью комплекса фиксирующей аппаратуры, содержащего систему визуального контроля зоны наплавки заготовки, выполненную с возможностью освещения зоны наплавки ультрафиолетовым излучением, фильтрации излучения, исходящего от зоны наплавки, и получения изображения зоны наплавки, систему фиксации акустических сигналов от формируемой заготовки, лазерную систему измерения температуры сварочной ванны, систему контроля подачи защитного газа и его концентрации в зоне печати, систему измерения скорости перемещения сварочной горелки и скорости перемотки наплавочной проволоки и систему измерения тока, величины и частоты сварочных импульсов, который выполнен в виде единой системы, связанной через аналого-цифровые преобразователи с системой ЧПУ посредством встроенных модулей высокопроизводительных вычислений по технологии nVidia CUDA или её аналогов и нейронной сети глубокого обучения, обеспечивающих обратную связь для оптимизации режимов электродуговой наплавки в процессе трехмерной печати, причем упомянутую нейронную сеть выполняют с возможностью автономного принятия решения об оптимизации режимов наплавки и формирования команд на изменение параметров оборудования с ЧПУ.

Документы, цитированные в отчете о поиске Патент 2019 года RU2696121C1

WO 2014013247 A2, 23.01.2014
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ СЕЛЕКТИВНОГО ЛАЗЕРНОГО СПЕКАНИЯ ОБЪЕМНОГО ИЗДЕЛИЯ ИЗ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Чивель Юрий Александрович
RU2595072C2
УСТРОЙСТВО И СПОСОБ ТЕКУЩЕГО КОНТРОЛЯ ЗОНЫ СВАРКИ, А ТАКЖЕ СИСТЕМА И СПОСОБ УПРАВЛЕНИЯ СВАРКОЙ 2003
  • Хенриксон Пер
RU2312745C2
СПОСОБ ОБНАРУЖЕНИЯ В ПРОЦЕССЕ СВАРКИ ДЕФЕКТОВ В СВАРНЫХ ШВАХ И ОПРЕДЕЛЕНИЯ ИХ МЕСТОПОЛОЖЕНИЯ ПО АКУСТИЧЕСКИМ СИГНАЛАМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Степанова Людмила Николаевна
  • Кабанов Сергей Иванович
  • Рамазанов Илья Сергеевич
  • Канифадин Кирилл Владимирович
  • Лебедев Евгений Юрьевич
  • Серьезнов Алексей Николаевич
RU2424510C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО ОБЪЕКТА 2006
  • Филиппи Йохен
  • Хальдер Томас
  • Маттес Томас
RU2337822C1
Способ горячих расшлаковок топок паровых котлов 1948
  • Архангельский Б.А.
  • Осиповский Н.Ф.
SU79824A1
US 2013328227 A1, 12.12.2013
US 2016184893 A1, 30.06.2016
WO 9834751 A1, 13.08.1998
CN 107718564 A, 23.02.2018
CN 106881462 A, 23.06.2017
CN 106570592 A, 19.04.2017
JP 2010131629 A, 17.06.2010.

RU 2 696 121 C1

Авторы

Кабалдин Юрий Георгиевич

Колчин Павел Владимирович

Шатагин Дмитрий Александрович

Киселев Андрей Викторович

Даты

2019-07-31Публикация

2018-07-13Подача