Рекомбинантный штамм дрожжей Pichia pastoris - продуцент фитазы Российский патент 2019 года по МПК C12N1/00 

Описание патента на изобретение RU2701498C1

Изобретение относится к микробиологии и биотехнологии и касается получения штаммов дрожжей Pichia pastoris, способных продуцировать фитазу.

Фосфор является важным минеральным питательным веществом для роста и развития животных. В большинстве источников сырья, используемого в животноводстве, такого, например, как зерновые и бобовые культуры, фосфор, в основном, содержится в форме фитата (мио-инозитол гексакисфосфат) [Advanced Food Research, 1982, 28, 1-92.]. Однако моногастричные животные не способны усваивать фитатный фосфор из-за отсутствия необходимого фермента в пищеварительном тракте [Can J Anim Sci., 2013, 93, 9-21.]. Кроме того, фитаты препятствуют эффективному усвоению кальция, магния, цинка, железа и других минеральных веществ комбикормов, а также связывают белки в недоступные для переваривания комплексы [Current Topics In Nutraceutical Research, 2008, 6(3), 131-144.].

Ферменты фитазы (мио-инозитол гексакисфосфат фосфогидролазы) гидролизуют фитат с отщеплением фосфатных групп и с успехом используются в качестве кормовой добавки, значительно повышая усвоение фосфора [J. Sci. Food Agric., 2015, 95, 878-896.]. Они обеспечивают высвобождение не только фитат-связанного фосфора, но также белков, макро- и микроэлементов, повышая питательные свойства кормов [British Poultry Science, 2004, 45(1), 101-108.].

В настоящее время фитазы получают микробиологическим путем с использованием рекомбинантных штаммов-продуцентов, потребность промышленности в которых постоянно растет [Afr. J. Biotechnol, 2009, 8(17), 4229-4232.]. Наиболее часто для высокоэффективной продукции гетерологичных белков используются метилотрофные дрожжи Pichia pastoris [J. Mol. Recognit., 2005, 18(2), 119-138. doi: 10.1002/jmr.687], которые обладают мощными системами экспрессии и секреции рекомбинантных белков (в том числе, фитаз) и для которых разработаны питательные среды и отработан процесс ферментации с использованием культуры высокой плотности.

Одним из способов, позволяющих обеспечить эффективную продукцию целевых ферментов является оптимизация кодонового состава нуклеотидных последовательностей генов, кодирующих гетерологичные ферменты [Appl Microbiol Biotechnol, 2007, 74, 1074-1083, Appl Microbiol Biotechnol, 2006, 72(5), 1039-47.]. Суть способа заключается в следующем. Из-за вырожденности генетического кода одна и та же аминокислота может кодироваться несколькими кодонами, и зачастую ей соответствует несколько изоакцепторных тРНК. Частоты встречаемости разных тРНК в клетках различных организмов неодинаковы. Эти частоты положительно коррелируют с частотами использования кодонов в клетках тех же организмов [Mol Biol Evol, 1985. 2(1): p. 13-34.], что является определенным препятствием для процесса трансляции в случае гетерологичной экспрессии генов, поскольку в реципиентных клетках для некоторых кодонов чужеродного гена может не хватать тРНК.

Для клеток микроорганизмов многих видов выявлены частоты встречаемости кодонов (http://www.kazusa.or.jp/codon/P.html), и эти данные используют для оптимизации нуклеотидных последовательностей гетерологичных генов с целью увеличения эффективности экспрессии.

Известны примеры использования оптимизированных синтетических нуклеотидных последовательностей для создания продуцентов гетерологичных фитаз на основе дрожжей Pichia pastoris.

Получены оптимизированные по кодоновому составу синтетические гены фитаз Citrobacter amalonaticus [ВМС Biotechnology, 2015, 15, 88.], Escherichia coli [J. Agric. Food Chem., 2013, 61(25), 6007-6015., CN 102586294, CN 102943083], Peniophora lycii [Appl Microbiol Biotechnol, 2006, 72(5), 1039-47.], Citrobacter braakii [Acta Microbiologica Sinica, 46(6), 945-950.], при экспрессировании которых в P. pastoris продуктивность некоторых штаммов возросла в 2,0-2,9 раз.

Используя известные правила оптимизации [Biotechnol Annu Rev, 2007. 13: p. 27-42., https://eu.idtdna.com/CodonOpt, https://www.genscript.com/tools/rare-codon-analysis] получают различные варианты нуклеотидных последовательностей, кодирующих один и тот же фермент, при этом, интеграция в хромосому этих последовательностей приводит к существенным различиям в уровне их экспрессии и продукции целевого гетерологичного фермента. Так, в работе [Microbial Cell Factories, 2012, 11, 61.] показано, что уровень продукции белка при использовании двух различных вариантов оптимизированных последовательностей гена целлобиогидролазы 2 из Trichoderma reesei различается в 4 раза.

Разные варианты оптимизации гена, кодирующего фитазу из Citrobacter freundii, осуществлены в работах [Appl Biochem Biotechnol., 2010, 162, 2157-2165, Journal of Microbiological Methods, 2010, 81(2), 147-152.], что привело к получению трансформантов с продуктивностью 193,2 ед/мл и 450 ед/мл культуральной жидкости, соответственно.

Таким образом, важной задачей является создание такого варианта оптимизированной нуклеотидной последовательности гетерологичного гена, который приведет к повышению эффективности ее экспрессии в штамме-хозяине.

Задачей заявляемого изобретения является расширение арсенала рекомбинантных микроорганизмов, продуцирующих фитазы.

Задача решена путем получения штамма дрожжей P. pastoris, продуцирующего фитазу, содержащего в составе хромосомы оптимизированную последовательность гена, кодирующего фитазу С. freundii.

Рекомбинантный штамм получен путем интеграции в состав хромосомы штамма Pichia pastoris (HIS4-) Y-4334 экспрессионной кассеты, в состав которой входит оптимизированная последовательность гена, кодирующего фитазу С. freundii.

Штамм является продуцентом фитазы и депонирован во Всероссийской Коллекции Промышленных Микроорганизмов (ВКПМ) НИЦ «Курчатовский институт» - ГосНИИгенетика как Pichia pastoris BCf9 ВКПМ Y-4484.

Культурально-морфологические характеристики заявляемого штамма.

При культивировании при температуре 28°С в течение 48 часов на агаризованной среде YP следующего состава (мас. %: пептон - 2, дрожжевой экстракт - 1, агар - 2, вода - остальное) с добавлением глюкозы (2 мас. %), клетки имеют овальную форму, 3-4 мкм в диаметре. Клетки почкуются, при этом почкование истинное, многостороннее. Истинного мицелия не образуют. Споруляция происходит при инкубации культуры на агаризованной среде следующего состава (мас. %): хлорид калия - 1.0, ацетат натрия - 0.5, глюкоза - 1.0, агар - 2.0, вода - остальное. Аски имеют тетраэдрическую форму, включают 4 аскоспоры.

На агаризованной среде YP с добавлением глюкозы (2 мас. %) колонии светло-бежевого цвета с ровным краем, матовой поверхностью, линзовидным профилем и пастообразной консистенцией. При росте в жидкой среде YP следующего состава (мас. %: пептон - 2, дрожжевой экстракт - 1, вода - остальное) с добавлением глюкозы (2 мас. %), при 28°С в течение 24 ч культивирования - жидкость мутная, осадок белый, коагуляции не наблюдается, пристеночных пленок не образует.

Физиолого-биохимические признаки:

Трансформант способен к росту как в аэробных, так и в анаэробных условиях.

В качестве единственного источника углерода способен использовать метанол, этанол, глюкозу, глицерин, лактат, сукцинат, не способен ассимилировать мальтозу, сахарозу, ацетат, крахмал, лактозу.

При культивировании в присутствии метанола трансформанты способны синтезировать фитазу.

Изобретение проиллюстрировано следующей фигурой.

Фиг. 1 Экспрессионная кассета 1

Пример 1. Конструирование штамма дрожжей Pichia pastoris, содержащего оптимизированный ген, кодирующий фитазу С. freundii

При конструировании интегративной экспрессионной кассеты используют метод "фьюжн-ПЦР" [Gene. 1989 Apr 15;77(1):61-8.].

Последовательность гена, кодирующего фитазу С. freundii, оптимизированную с использованием вышеупомянутых правил оптимизации, синтезируют известным методом [Journal of Microbiological Methods, 2010, 81(2), 147-152.].

Полученную последовательность ДНК встраивают в экспрессионную кассету 1 (фиг. 1), в состав которой входят следующие генетические элементы:

1. Ген, встроенный в единую рамку считывания с нуклеотидной последовательностью сигнального пептида α-фактора, под контролем модифицированного АОХ1 промотора [ВМС Biotechnology. - 2015, - V. 15, - Р. 88.].

2. Терминатор транскрипции ТТАОХ1

3. Дрожжевой селективный маркер HIS4, фланкированный сайтами lox 66 и lox 71, комплементирующий у дрожжей Pichia pastoris мутацию в гене HIS4.

4. Область интеграции - нуклеотидную последовательность гена АОХ1

Интегративную экспрессионную кассету трансформируют в клетки штамма Pichia pastoris (HIS4-) Y-4334, которые предварительно выращивают в жидкой питательной среде YP с добавлением глюкозы (2 мас. %) до концентрации 1×108 клеток на 1 мл. Клетки отделяют центрифугированием, промывают в ледяной стерильной воде, а затем в ледяном растворе 1М сорбитола. Затем клетки инкубируют в 25 мМ растворе дитиотрейтола в течение 15 минут и промывают в ледяном растворе 1М сорбитола. Далее клетки ресуспендируют в ледяном растворе 1М сорбитола в концентрации 1-5×109 клеток на 1 мл. Аликвоту, объемом 40 мкл клеточной суспензии, переносят в охлажденный эппендорф, добавляют 400 нг ДНК экспрессионной интеграционной кассеты, и инкубируют во льду 5 минут. Смесь клеток и ДНК переносят в предварительно охлажденную кювету для электропорации. Электропорацию проводят при следующих условиях: 1,5 кВ, 400 Ом, 25uF. После порации добавляют 1 мл ледяного раствора 1М сорбитола.

Селекцию трансформантов ведут в течение 5 суток при температуре 30°С на агаризованной среде следующего состава (мас. %): Na2HPO4 - 0,6; KH2PO4 - 0,3; NaCl - 0,05; NH4Cl - 0,1; MgSO4 7H2O - 0,065; агар - 2; глюкоза - 2; CaCl2 - 0,07; биотин, мг - 0,0002; кальций пантотенат - 0,04; фолиевая кислота - 0,0002; ниацин - 0,04; р-аминобензойная к-та - 0,02; пиридоксин гидрохлорид - 0,04; рибофлавин - 0,02; тиамин гидрохлорид - 0,04; борная кислота - 0,05; CuSO4 - 0,004; KJ - 0,01; FeCl3 - 0,02; натрий молибдат - 0,02; ZnSO4 - 0,04, вода - остальное.

Наличие целевого гена в составе хромосомной ДНК полученных трансформантов определяют методом ПЦР с использованием праймеров PhyCf-m-F gaagagcagaacggtatgaaact, PhyCf-m-R ttattccgtaactgcacactc.

Наличие ПЦР-фрагментов размером 1236 п.н. подтверждает присутствие синтетического гена в составе хромосомы полученных трансформантов.

Для отбора наиболее продуктивных трансформантов проводят их культивирование в жидкой ферментационной питательной среде.

Посевную культуру выращивают в пробирках (50 мл) с 10 мл жидкой питательной среды YP с добавлением глюкозы (2 мас. %) при 28°С в течение 24 ч на качалке (250 об/мин). Посев ферментационной среды осуществляют в соотношении 1/10.

Ферментацию проводят в колбах при 28°С на качалке (250 об/мин) в питательной среде YP с добавлением 2% глицерина в течение 24 ч. Экспрессию гена фитазы индуцируют путем добавления 0,5% метанола, через три часа 0,5% метанола, далее 1% метанола каждые 24 часа в течение 4 дней.

Продуктивность трансформантов Pichia pastoris оценивают по активности фитазы, образовавшейся в культуральной жидкости. Для этого клетки трансформанта осаждают центрифугированием, а супернатант используют для определения фитазной активности модифицированным методом Фиске-Субарроу [. J Microbiol Methods, 1999, 39(1), 17-22.].

По результатам ферментации отбирают наиболее продуктивный трансформант, который в указанных условиях синтезирует фитазу С. freundii в концентрации 1403 ед./мл культуральной жидкости.

Трансформант депонирован во Всероссийской Коллекции Промышленных Микроорганизмов (ВКПМ) НИЦ «Курчатовский институт» - ГосНИИгенетика как Pichia pastoris BCf9 ВКПМ Y-4484.

Похожие патенты RU2701498C1

название год авторы номер документа
Рекомбинантный штамм дрожжей Pichia pastoris с увеличенной продукцией фитазы Escherichia coli 2019
  • Гордеева Татьяна Леонидовна
  • Борщевская Лариса Николаевна
  • Калинина Анна Николаевна
  • Синеокий Сергей Павлович
  • Воронин Сергей Петрович
  • Каширская Маргарита Дмитриевна
  • Федай Татьяна Дмитриевна
RU2737623C1
Рекомбинантный штамм дрожжей Pichia pastoris - продуцент фитазы Escherichia coli 2019
  • Гордеева Татьяна Леонидовна
  • Борщевская Лариса Николаевна
  • Калинина Анна Николаевна
  • Синеокий Сергей Павлович
  • Воронин Сергей Петрович
  • Каширская Маргарита Дмитриевна
  • Федай Татьяна Дмитриевна
RU2751595C2
Трансформант дрожжей Pichia pastoris, продуцирующий фитазу 2019
  • Гордеева Татьяна Леонидовна
  • Борщевская Лариса Николаевна
  • Калинина Анна Николаевна
  • Синеокий Сергей Павлович
  • Воронин Сергей Петрович
  • Каширская Маргарита Дмитриевна
  • Агранович Аннета Михайловна
RU2708446C1
Трансформант дрожжей Ogataea haglerorum - продуцент фитазы Escherichia coli 2021
  • Лазарева Марина Николаевна
  • Лаптева Анастасия Романовна
  • Каширская Маргарита Дмитриевна
  • Синеокий Сергей Павлович
  • Тарутина Марина Геннадьевна
RU2771079C1
Трансформант дрожжей Pichia pastoris, продуцирующий фитазу Escherichia coli 2019
  • Гордеева Татьяна Леонидовна
  • Борщевская Лариса Николаевна
  • Калинина Анна Николаевна
  • Синеокий Сергей Павлович
  • Воронин Сергей Петрович
  • Каширская Маргарита Дмитриевна
  • Федай Татьяна Дмитриевна
RU2737621C1
Трансформант дрожжей Komagataella phaffi - продуцент фитазы Citrobacter gillenii 2020
  • Гордеева Татьяна Леонидовна
  • Ткаченко Артур Александрович
  • Борщевская Лариса Николаевна
  • Синеокий Сергей Павлович
RU2771582C1
Рекомбинантный штамм дрожжей Ogataea haglerorum - продуцент фитазы Escherichia coli 2021
  • Лазарева Марина Николаевна
  • Каширская Маргарита Дмитриевна
  • Петров Сергей Викторович
  • Добрынин Владимир Юрьевич
  • Воронин Сергей Петрович
  • Лаптева Анастасия Романовна
  • Синеокий Сергей Павлович
  • Тарутина Марина Геннадьевна
RU2785901C1
Трансформант дрожжей Komagataella phaffii, продуцирующий фитазу Cronobacter turicensis 2021
  • Гордеева Татьяна Леонидовна
  • Борщевская Лариса Николаевна
  • Синеокий Сергей Павлович
RU2756330C1
Штамм дрожжей Komagataella phaffii с инактивированным геном HIS4 - реципиент для конструирования безмаркерных штаммов-продуцентов гетерологичных белков 2022
  • Ткаченко Артур Александрович
  • Гордеева Татьяна Леонидовна
  • Синеокий Сергей Павлович
  • Борщевская Лариса Николаевна
  • Федай Татьяна Дмитриевна
RU2787584C1
Штамм дрожжей Komagataella phaffii с инактивированным геном LEU2 - реципиент для конструирования штаммов-продуцентов гетерологичных белков 2022
  • Ткаченко Артур Александрович
  • Гордеева Татьяна Леонидовна
  • Синеокий Сергей Павлович
  • Борщевская Лариса Николаевна
RU2788528C1

Иллюстрации к изобретению RU 2 701 498 C1

Реферат патента 2019 года Рекомбинантный штамм дрожжей Pichia pastoris - продуцент фитазы

Изобретение относится к микробиологии и биотехнологии. Предложен рекомбинантный штамм дрожжей Pichia pastoris ВКПМ Y-4484, продуцирующий фитазу. Указанный штамм содержит в составе хромосомы оптимизированную последовательность гена, кодирующего фитазу Citrobacter freundii. Штамм синтезирует фитазу Citrobacter freundii в концентрации 1403 ед./мл культуральной жидкости. 1 ил., 1 пр.

Формула изобретения RU 2 701 498 C1

Рекомбинантный штамм дрожжей Pichia pastoris ВКПМ Y-4484 - продуцент фитазы, содержащий в составе хромосомы оптимизированную последовательность гена, кодирующего фитазу Citrobacter freundii.

Документы, цитированные в отчете о поиске Патент 2019 года RU2701498C1

ГОРДЕЕВА Т.Л
И ДР
Рекомбинантный продуцент кормового фермента фитазы на основе дрожжей Pichia pastoris
Актуальная биотехнология, 2018, N/3(26), с
Аппарат для испытания прессованных хлебопекарных дрожжей 1921
  • Хатеневер Л.С.
SU117A1
ГОРДЕЕВА Т.Л
И ДР
Сравнительный анализ эффективности экспрессии генов бактериальных фитаз в дрожжах Pichia pastoris с помощью чашечного теста
Биотехнология, 2017, Т.33, N
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Пуговица 0
  • Эйман Е.Ф.
SU83A1
МУТАНТНАЯ РЕКОМБИНАНТНАЯ ТЕРМОСТАБИЛЬНАЯ ФИТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, КОДИРУЮЩИЙ УКАЗАННУЮ ФИТАЗУ (ВАРИАНТЫ), ШТАММ Pichia pastoris - ПРОДУЦЕНТ УКАЗАННОЙ ФИТАЗЫ (ВАРИАНТЫ) 2009
  • Гордеева Татьяна Леонидовна
  • Борщевская Лариса Николаевна
  • Синеокий Сергей Павлович
RU2472855C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДА ДЛЯ ЭКСПРЕССИИ В ДРОЖЖАХ PICHIA PASTORIS ГЕНА ФИТАЗЫ (ВАРИАНТЫ), ШТАММ ДРОЖЖЕЙ PICHIA PASTORIS - ПРОДУЦЕНТ ФИТАЗЫ (ВАРИАНТЫ) 2009
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Бавыкина Наталия Борисовна
  • Синеокий Сергей Павлович
RU2409670C1
CN 102586294 A, 18.07.2012.

RU 2 701 498 C1

Авторы

Гордеева Татьяна Леонидовна

Борщевская Лариса Николаевна

Калинина Анна Николаевна

Синеокий Сергей Павлович

Воронин Сергей Петрович

Каширская Маргарита Дмитриевна

Агранович Аннета Михайловна

Даты

2019-09-26Публикация

2018-12-24Подача