СПОСОБ СНИЖЕНИЯ КОЛИЧЕСТВА СТВОЛОВЫХ КЛЕТОК РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ Российский патент 2019 года по МПК A61K31/4184 A61P35/00 

Описание патента на изобретение RU2702910C2

Изобретение относится к области медицины, в частности онкологии и может быть использовано для снижения количества опухолевых стволовых клеток (далее - ОСК).

Известно, что опухолевые клетки гетерогенны по различным морфофункциональным показателям, включая чувствительность к радио - и химиотерапии. По современным представлениям среди всех опухолевых клеток существует небольшая фракция ОСК, которые в различных литературных источниках называют стволоподобными клетками (stem-like cells), опухоль-инициирующими клетками (tumor initiating cells), опухоль-распространяющими клетками (tumor propagating cells). Эти клетки характеризуются более высокой радио- и химиорезистентностью по сравнению с остальной массой опухолевых клеток. Полагают, что ОСК, сохранившие жизнеспособность в ходе лучевой и химиотерапии, могут являться причиной развития рецидивов и метастазов после окончания лечения (Marotta L., Polyak K. Cancer stem cells: a model in the making // Current Opinion in Genetics & Development. - 2009. - V. 19. - P. 44-50). Поэтому разработка средств и способов терапии, направленной на снижение количества ОСК или повышение их чувствительности к известным противоопухолевым воздействиям, является одной из наиболее важных проблем экспериментальной онкологии.

Существует несколько способов идентификации ОСК, одним из которых является иммунофенотипирование по поверхностным маркерам. В частности, ОСК молочной железы, в том числе в стабильной культуре линии MCF-7, могут быть выявлены по иммунофенотипу CD44+CD24-/low (Al-Hajj М., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells // Proceedings of the National Academy of Sciences of the United States of America. - 2003. - V. 100. - No 7. - P. 3983-3988; Fillmore С.М., Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy // Breast Cancer Res. - 2008. - V. 10. - No 2. - Article R25).

Известен способ, снижающий количество ОСК, на основе использования полиэфирного ионофорного антибиотика салиномицин, который значимо уменьшает количество CD44+CD24-/low клеток линии MCF-7 и ОСК многих других линий опухолевых клеток (Lu Y., Мао J., Yu X. Hou Z., Fan S., Wang Н., Li J., Kanq L., Liu P., Liu Q., Li L. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling // Chemico-Biological Interactions. - 2015. - V. 228. - P. 100-107). Возможные механизмы действия салиномицина на ОСК связаны с его способностью ингибировать сигнальные пути SOX2, Hedgehog, CXCR4.

Недостатком салиномицина является его токсичность в отношении клеток нервной системы и других нормальных клеток (Boehmerle W., Endres М. Salinomycin induces calpain and cytochromec-mediated neuronal cell death // Cell Death and Disease. - 2011. - V. 2. - P. 2-10; Jaganmohan R., Jain M.V., Hallbeck A.L., Roberq K., Lotfi K., Los M.J. Glucose starvation-mediated inhibition of salinomycin induced autophagy amplifies cancer cell specific cell death // Oncotarget. - V. 6. - No 12. - P. 10134-10145).

Известно вещество метформин (1,1 - диметилбигуанид гидрохлорид), которое широко используют в качестве гипогликемического препарата для лечения диабета 2-го типа (Wiernsperger N., Bailey C.J. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms // Drugs. - 1999. - V. 58. - No 1. - P. 31-39). Доказана его высокая противоопухолевая активность в отношении CD44+CD24-/low ОСК молочной железы. При этом на остальные (не стволовые) опухолевые клетки это вещество оказывало менее выраженное действие (Lee Н. Park H.J., Oh Е.Т., Choi В.Н., Williams В., Lee С.K., Somq C.W. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined // PLOS ONE. - 2014. - V. 9. - No 2. - P. 1-11). Ключевым механизмом его действия является способность нарушать окислительное фосфорилирование в митохондриях опухолевых клеток, в том числе ОСК.

Недостатком метформина является то, что он наиболее эффективен в отношении ОСК только совместно с гипертермией или радиационным воздействием.

Известно вещество куркумин (дифферулоилметан), которое представляет собой полифенол, полученный из азиатской специи куркумы. В многочисленных исследованиях был показан высокий терапевтический потенциал куркумина в качестве средства снижения количества ОСК рака молочной железы (Mukherjee S., Mazumbar М., Manna А., Saha S., Khan P., Bhattacharjee O., Guha D., Adnikary A., Mukhjerjee S., Das T. Curcumin inhibits breast cancer stem cell migration by amplifying the E cadherin/β-cateninnegative feedback loop // Stem Cell Research & Therapy. - 2014. - No 5. - P. 116-134). Куркумин воздействует на ряд сигнальных путей, играющих важную роль в жизнедеятельности ОСК, например, таких как Wnt, Notch-1 и NFκ-B Е., Thaqi М., Khaja F., Kuzmis A., H. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells // Drug DelivTransl Res. - 2013. - No 3. - P. 1-25).

Недостатком этого соединения является его низкая биодоступность, плохая абсорбция и недостаточная стабильность in vivo (Bansal S., Goel M., Aqil F., Vadhanam M., Gupta R. Advanced drug-delivery systems of curcumin for cancer chemoprevention // Cancer Prev. Res. (Phila). - 2011. - №4. P. 1158-1171; Anand P., Kunnumakkara A., Newman R., Aggarwal B. Bioavailability of Curcumin: Problems and Promises // Molecular Pharmaceutics. - 2007. - V. 4. - No 6. P. 807-818).

Известны патенты на изобретения, направленные на лечение злокачественных новообразований и включающие способы снижения количества ОСК с помощью различных механизмов. В том числе изобретение WO/2016/010886 (Zhu D., Boylan J., Xu, S., Riggs J., Shi Т., Wurmser A., Mikolon D., Deyanat-Yazdi G. Methods of treating a cancer using substituted pyrrolopyrimidine compounds, compositions thereof) на основе использования замещенных пирролопиримидиновых соединений и композиций на их основе; изобретение WO/2012/112943 (Foord О., Dylla S., Stull R., Bankovich A., Lazetic A.L.L., Bernstein J. Novel modulators and methods of use) на основе использования антител к PTK7 и их конъюгатов с цитотоксическим агентом; изобретение WO 2011088123 (Satyal S.Н., Mitra S.S.K., Garni A.L. Wnt antagonists and methods of treating and testing) на основе использования Wnt-связывающего полипептида, ингибирующего Wnt- сигнальный путь, отдельно или в комбинации с другими противоопухолевыми препаратами; изобретение WO/2016/057980 (Roberts D.R.. Kaur S., Liu С. Methods to eliminate cancer stem cells by targeting CD47) на основе изменения CD47-сигналинга и индукции дифференцировки ОСК различными средствами.

Однако во всех известных способах не используются димерные бисбензимидазолы, получаемые методами химического синтеза.

Известен способ снижения количества ОСК с помощью препарата флубендазол. Это соединение является членом семейства бензимидазолов, имеет типичную бензимидазольную часть, но с добавлением атома фтора в основную структуру, чем и отличается от других бензимидазолов. Флубендазол широко используется как эффективное противогельминтное средство. Недавние исследования показали, что флубендазол подавляет пролиферацию опухолевых клеток, а также снижает количество CD44+CD24-/low клеток рака молочной железы линии MCF-7 на 25% (Hou Z.-J., Luo X., Zang W., Peng F., Cui В., Wu S.-J., Zheng F.-M., Xu J., Xu L.-Z., Long Z.-J., Wang X.-T., Li G.-H., Wan X.-Y., Yang Y.-L., Liu Q. Flubendazole, FDA-approved antihelmintic, targets breast cancer stem-like cells // Oncotarget. - 2015. - V. 6. - No. 8. - P. 6326-6340).

Недостатки способа снижения количества ОСК с помощью флубендазола - низкая биодоступность из-за высокой липофильности соединения.

Прототипом предлагаемого технического решения является способ снижения общего количества опухолевых клеток рака молочной железы человека in vitro, основанный на применении водонерастворимых димерных бисбензимидазолов (dimeric bisbenzimidazoles - DB). Водонерастворимые димерные бисбензимидазолы являются флуоресцентными химическими соединениями из группы бисбензимидазолов, в них два бисбензимидазольных блока соединены между собой метиленовым линкером - DB(n), где n - число метиленовых звеньев (Фиг. 1) (Иванов А.А., Салянов В.И., Стрельцов С.А., Черепанова Н.А., Громова Е.С., Жузе А.Л. Лиганды, специфичные к определенным последовательностям пар оснований ДНК. XIV. Синтез флуоресцентных биологически активных димерных бисбензимидазолов - DB (3, 4, 5, 7, 11) // Биоорганическая химия. - 2011. - Т. 37. - №4. - С. 530-541; Иванов А.А., Салянов В.И., Жузе А.Л. Лиганды, специфичные к определенным последовательностям пар оснований ДНК. XV. Синтез и спектральные характеристики новой серии димерных бисбензимидазолов - DB(1, 2, 6, 8, 9, 10, 12) // Биоорганическая химия. - 2016. - Т. 42. - №2. - С. 205-213). Доказана их способность снижать общее количество опухолевых клеток линии MCF-7, а также оказывать аддитивное цитотоксическое действие на общую популяцию опухолевых клеток в комбинации с облучением (Чурюкина К.А., Замулаева И.А., Иванов А.А., Коваль B.C., Жузе А.Л. Радиомодифицирующее и противоопухолевое действие синтетических димерных бисбензимидазолов на клетки рака молочной железы линии MCF-7 in vitro // Радиационная биология. Радиоэкология. - 2017. - Т. 57. - №2. - С. 136-144).

Однако, в известном способе отсутствуют данные о действии водонерастворимых димерных бисбензимидазолов на популяцию ОСК.

Технический результат заявляемого изобретения заключается в снижения количества ОСК.

Технический результат достигается тем, что также как и в известном способе в течение 72 часов воздействуют на опухолевые клетки in vitro с помощью ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов.

Особенность заявляемого способа заключается в том, что определяют снижение количества стволовых клеток: проводят инкубацию с водонерастворимым димерным бисбензимидазолом с 5 метиленовыми звеньями в составе линкера (DB (5) или водонерастворимым димерным бисбензимидазолом с 7 метиленовыми звеньями (DB (7) in vitro при температуре +37°С в течение 3-х суток, после чего оценивают количество СВ44+CD24-/1ow опухолевых стволовых клеток.

Изобретение иллюстрируется подробным описанием, примерами и иллюстрациями, на которых изображено:

Фиг. 1. - Химическая структура синтетических водонерастворимых димерных бисбензимидазолов DB(n): 1 - бисбензимидазольный блок, 2 - метиленовый линкер, в котором n может варьировать от 1 до 11.

Фиг. 2. - Пример выделения клеток линии MCF-7 на основе показателей прямого (FSC) и бокового (SSC) светорассеяния с помощью проточной цитометрии. 3 - регион клеток R1 для последующего анализа интенсивности флуоресценции с антителами к CD24 и CD44, меченными различными флуорохромами.

Фиг. 3. - Пример распределения клеток MCF-7 по интенсивности флуоресценции с антителами к CD24 и CD44, меченными фикоэритрином и флуоресцеинизотиоционатом, соответственно: 4 - регион R2, содержащий CD44+CD24-/low клетки.

Фиг. 4. - Средняя интенсивность флуоресценции опухолевых стволовых и не стволовых клеток линии MCF-7, инкубированных с DB(n), по данным проточной цитофлуориметрии.

Способ осуществляют следующим образом, включая последовательные этапы:

I. Пробоподготовка для выявления CD44+CD24-/low клеток:

Клетки рака молочной железы линии MCF-7 рассевают в культуральные флаконы (25 см2) с добавлением 6 мл полной питательной среды (культуральная среда DMEM, содержащая 10% сыворотки крови крупного рогатого скота, пенициллин (50000 ед/л), стрептомицин (50 мг/л) и глютамин (292 мг/л).

Через сутки во флакон с клетками добавляют АТ-специфичные ДНК-связывающие лиганды DB(n), в которых два бисбензимидазольных блока соединены между собой линкером с числом метиленовых групп (n) 5 или 7, растворенные в диметилсульфоксиде (ДМСО), до конечной концентрации 20 мкМ.

После добавления DB(n) клетки культивируют в стандартных условиях в СО2 инкубаторе в течение 3-х суток.

Затем клетки извлекают из флаконов с помощью смеси растворов версена и трипсина (1:1, «Панэко», Россия) в холодный (+4°С) раствор Хэнкса («Панэко», Россия).

Производят подсчет количества клеток, выросших во флаконе с помощью камеры Горяева.

Затем клетки разводят в соотношении 1 млн клеток на 100 мкл холодного раствора Хэнкса, в который добавляют антитела к CD44, меченные флуоресцеинизотиоцитатом (ФИТЦ) (Becton Dickinson, США), и антитела к CD24, меченные фикоэритрином (Becton Dickinson, США), из расчета по 20 мкл антител на 1 млн клеток.

Пробы инкубируют с антителами 30 минут на льду в темноте.

После окончания инкубации пробы центрифугируют в течение 5 минут при 200xg и к получившемуся осадку добавляют холодный раствор Хэнкса.

II. Получение данных с помощью проточной цитометрии:

Образец, подготовленный как описано на I этапе, анализируют на проточном цитофлуориметре, оснащенном лазерами с длинами волн 364 нм и 488 нм.

Для измерения флуоресценции ФИТЦа, используют узкополосные фильтры 530/30 нм, для фикоэритрина - 585/42, для DB(n) - 424/44 нм.

В каждом образце анализируют данные об интенсивности прямого и бокового светорассеяния, флуоресценции ФИТЦа, фикоэритрина и DB(n). Полученные результаты записывают в цифровом виде.

Сохраненные данные обрабатывают с помощью программы CellQuestPro (Becton Dickinson, США).

III. Обработка данных, собранных с помощью проточной цитометрии:

Строят график точечного распределения клеток по прямому (forward scatter - FSC) и боковому светорассеянию (side scatter - SSC). На графике выделяют регион R1 (3) живых клеток, формирующих группу по показателям светорассеяния (Фиг. 2).

Строят график распределения клеток из региона R1 по интенсивности флуоресценции антител к CD44 и CD24 (Фиг. 3). На графике выделяют регион клеток R2 с иммунофенотипом CD44+CD24-/low (4) и определяют в нем количество клеток.

Далее определяют среднюю интенсивность флуоресценции DB(n) отдельно в ОСК с иммунофенотипом CD44+CD24-/low, которые были выделены в регионе R2, и в остальных клетках.

Рассчитывают относительное количество (долю) CD44+CD24-/low клеток путем деления количества клеток в R2 на число клеток в R1. Абсолютное количество CD44+CD24-/low клеток получают путем умножения доли этих клеток на общее количество клеток, выросших во флаконе.

Пример 1.

Изменение абсолютного количества CD44+CD24-/low клеток через 72 часа после добавления вещества DB (5) или DB (7).

Установлено, что при инкубации клеток MCF-7 с DB(n), где n=5 или 7, исследуемые соединения значимо снижают абсолютное количество CD44+CD24-/low ОСК по сравнению с контролем (p<0,05). Так, вещество DB(7) приводит к снижению абсолютного количества ОСК в 5,2 раза, a DB(5) - в 7,5 раз по сравнению с контролем. При этом количество остальных (не стволовых) клеток тоже уменьшается при действии данных веществ, но в меньшей степени - в 2,3 и 1,8 раз, соответственно. Абсолютное количество CD44+CD24-/low клеток в контроле составляло в среднем (±SE) 4975±680/флакон, в группе DB(5) - 665±65/флакон, в группе DB(7) - 948±99/флакон. Абсолютное количество не стволовых клеток составляло (17,1±0,9)×105 в контроле, в группе в группе DB(5) - (9,4±0,6)×105, в группе DB(7) - (7,3±0,9)×105.

Пример 2.

Изменение относительного количества CD44+CD24-/low клеток через 72 часа после добавления вещества DB (5) или DB (7).

Показано, что вещество DB(5) статистически значимо снижает относительное количество CD44+CD24-/low ОСК в 4,8 раз по сравнению с контролем: средняя доля ОСК в контроле составляет 0,29±0,04%, в то время как доля этих клеток в группе DB(5) - только 0,06±0,01%, p<0,05. Вещество DB(7) снижает долю ОСК в меньшей степени - до 0,08±0,02%, т.е. в 3,6 раз по сравнению с контролем (p<0,05).

Данный пример доказывает более высокую чувствительность ОСК, чем остальной массы опухолевых клеток, к DB (n), где n=5 или 7.

Вместе результаты из примеров №1 и №2 показывают эффективность действия DB(n) в отношении ОСК рака молочной железы человека линии MCF-7.

Пример 3.

Интенсивность накопления DB(5) и DB(7) в ОСК и остальных клетках.

Благодаря тому, что комплекс DB(n) - ДНК обладает достаточно высокой флуоресценцией в рабочем диапазоне современных проточных цитофлуориметров, оснащенных ультрафиолетовым лазером, существует возможность оценки внутриклеточного накопления этих соединений с помощью метода проточной цитометрии. Для оценки накопления DB(n) отдельно в ОСК и остальных (не стволовых) клетках выполняли идентификацию CD44+CD24-/low ОСК в образцах, после чего анализировали интенсивность флуоресценции DB(5) или DB(7) в указанных популяциях опухолевых клеток.

Витальное исследование накопления DB(n) в CD44+CD24low/- ОСК и остальной массе опухолевых клеток с помощью проточной цитофлуориметрии показало, что интенсивность флуоресценции как DB(5), так и DB(7) в обеих клеточных популяциях примерно одинакова. Так, средняя интенсивность флуоресценции DB(5) в ОСК составила 95,3±14,4 отн. ед., DB(5) в остальных клетках - 92,3±4,9 отн. ед.; DB (7) в ОСК - 92,8±10,8 отн. ед., DB(7) в остальных клетках - 109,2±10,5 отн. ед, что было значительно выше контрольной аутофлуоресценции соответствующих клеток (p<0,001 для обоих соединений по сравнению с контролем) (Фиг. 4).

Пример показывает, что DB(n) накапливаются примерно в равной степени в стволовых и не стволовых клетках, причем важно, что DB(n) не откачиваются из ОСК, как многие известные химиопрепараты и

Примеры №1 и 2 показывают, что новый способ, заключающийся в 72 часовом воздействии на клетки ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов in vitro, позволяет снижать количество ОСК. Установлено, что водонерастворимые димерные бисбензимидазолы с числом метиленовых звеньев 5 и 7 (DB (5) и DB (7)) многократно уменьшают относительное и абсолютное количество CD44+CD24-/low ОСК, при этом указанные соединения обладают направленным действием именно на ОСК, снижая их количество в большей степени по сравнению с остальными опухолевыми клетками. Пример №3 подтверждает эффективность действия DB(n) на ОСК благодаря тому, что данные соединения не откачиваются из ОСК, а накапливаются и задерживаются внутри этих клеток, тем самым оказывая элиминирующее действие не только на общую массу опухолевых клеток, но и, что важно на ОСК.

В соответствии с концепцией ОСК, все ключевые характеристики злокачественных новообразований, делающие их смертельно опасными заболеваниями, определяются именно ОСК. Снижение количества ОСК, которые являются более химио- и радиорезистентными, чем остальная масса опухолевых клеток, позволит повысить химио- и радиочувствительность опухоли в целом, что в свою очередь будет способствовать повышению эффективности лечения.

Данное исследование было выполнено за счет гранта Российского научного фонда №18-75-10025.

Похожие патенты RU2702910C2

название год авторы номер документа
СПОСОБ СНИЖЕНИЯ КОЛИЧЕСТВА СТВОЛОВЫХ КЛЕТОК АДЕНОКАРЦИНОМЫ МОЛОЧНОЙ ЖЕЛЕЗЫ ЧЕЛОВЕКА 2022
  • Чурюкина Кристина Александровна
  • Матчук Ольга Николаевна
  • Замулаева Ирина Александровна
  • Каприн Андрей Дмитриевич
  • Иванов Сергей Анатольевич
  • Жузе Алексей Львович
  • Коваль Василий Сергеевич
  • Арутюнян Альберт Ферроевич
RU2798550C2
Способ подавления индуцирующего действия высокомолекулярной гиалуроновой кислоты на стволовые клетки рака молочной железы 2021
  • Замулаева Ирина Александровна
  • Матчук Ольга Николаевна
  • Абрамова Мария Риксовна
  • Жузе Алексей Львович
  • Каприн Андрей Дмитриевич
RU2774031C1
СПОСОБ ИНГИБИРОВАНИЯ РАДИАЦИОННО-ИНДУЦИРОВАННОГО УВЕЛИЧЕНИЯ КОЛИЧЕСТВА СТВОЛОВЫХ КЛЕТОК РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ ЧЕЛОВЕКА 2022
  • Чурюкина Кристина Александровна
  • Матчук Ольга Николаевна
  • Замулаева Ирина Александровна
  • Коваль Василий Сергеевич
  • Жузе Алексей Львович
  • Арутюнян Альберт Ферроевич
  • Каприн Андрей Дмитриевич
  • Иванов Сергей Анатольевич
RU2800366C2
СПОСОБ СНИЖЕНИЯ КЛОНОГЕННОЙ АКТИВНОСТИ СТВОЛОВЫХ КЛЕТОК РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ 2019
  • Замулаева Ирина Александровна
  • Чурюкина Кристина Александровна
  • Жузе Алексей Львович
  • Иванов Александр Александрович
RU2700695C2
Способ определения снижения радиационно-индуцированной миграции клеток рака молочной железы человека линии MCF-7 2022
  • Чурюкина Кристина Александровна
  • Замулаева Ирина Александровна
  • Якимова Анна Олеговна
  • Жузе Алексей Львович
  • Иванов Александр Александрович
  • Каприн Андрей Дмитриевич
RU2789099C2
СПОСОБ ПРОГНОЗИРОВАНИЯ РАДИОЧУВСТВИТЕЛЬНОСТИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ ВЕРХНИХ ДЫХАТЕЛЬНЫХ ПУТЕЙ 2020
  • Замулаева Ирина Александровна
  • Селиванова Елена Ивановна
  • Андреев Вячеслав Георгиевич
RU2735982C2
Способ оценки способности клеток рака молочной железы к дедифференцировке методом образования сфероидов 2022
  • Першина Александра Геннадьевна
  • Удут Елена Владимировна
  • Невская Ксения Владимировна
  • Ефимова Лина Викторовна
  • Литвяков Николай Васильевич
  • Хмелевская Екатерина Сергеевна
RU2805842C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ДЕЙСТВИЯ ПРОТОННОЙ ТЕРАПИИ НА СТВОЛОВЫЕ КЛЕТКИ МЕЛАНОМЫ 2022
  • Матчук Ольга Николаевна
  • Борейко Алла Владимировна
  • Бугай Александр Николаевич
  • Замулаева Ирина Александровна
  • Каприн Андрей Дмитриевич
  • Корякин Сергей Николаевич
  • Красавин Евгений Александрович
  • Мосина Вера Алексеевна
  • Селиванова Елена Ивановна
  • Соловьев Алексей Николаевич
  • Чаусов Владимир Николаевич
  • Якимова Анна Олеговна
RU2798733C2
ПЛАЗМИДА ДЛЯ ВЫЯВЛЕНИЯ ЭПИТЕЛИАЛЬНОГО СОСТОЯНИЯ КЛЕТКИ ЧЕЛОВЕКА 2019
  • Алексеев Борис Яковлевич
  • Шкурников Максим Юрьевич
RU2716054C1
Способ прогнозирования риска плохого ответа опухоли на неоадъювантную химиотерапию у пациенток с инвазивной карциномой молочной железы 2018
  • Кайгородова Евгения Викторовна
  • Перельмутер Владимир Михайлович
  • Тарабановская Наталья Анатольевна
  • Симолина Елена Ивановна
  • Савельева Ольга Владимировна
  • Таширева Любовь Александровна
  • Денисов Евгений Владимирович
RU2682967C1

Иллюстрации к изобретению RU 2 702 910 C2

Реферат патента 2019 года СПОСОБ СНИЖЕНИЯ КОЛИЧЕСТВА СТВОЛОВЫХ КЛЕТОК РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ

Изобретение относится к области медицины, в частности онкологии, и может быть использовано для снижения количества опухолевых стволовых клеток (ОСК). Способ снижения количества стволовых клеток рака молочной железы заключается в 72-часовом воздействии на опухолевые клетки in vitro ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов. Проводят инкубацию с водонерастворимым димерным бисбензимидазолом с 5 метиленовыми звеньями в составе линкера DB (5) или водонерастворимым димерным бисбензимидазолом с 7 метиленовыми звеньями DB (7) in vitro при температуре +37°С в течение 3-х суток, после чего оценивают количество CD44+CD24-/1ow опухолевых стволовых клеток. Использование данного способа снижает количество ОСК, которые являются более химио- и радиорезистентными, чем остальная масса опухолевых клеток, что позволяет повысить химио- и радиочувствительность опухоли в целом, что в свою очередь будет способствовать повышению эффективности лечения. 4 ил., 3 пр.

Формула изобретения RU 2 702 910 C2

Способ снижения количества стволовых клеток рака молочной железы, заключающийся в 72-часовом воздействии на опухолевые клетки in vitro ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов, отличающийся тем, что проводят инкубацию с водонерастворимым димерным бисбензимидазолом с 5 метиленовыми звеньями в составе линкера DB (5) или водонерастворимым димерным бисбензимидазолом с 7 метиленовыми звеньями DB (7) in vitro при температуре +37°С в течение 3-х суток, после чего оценивают количество CD44+CD24-/1ow опухолевых стволовых клеток.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702910C2

Чурюкина К.А
и др
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Радиоэкология, 2017, т
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1
Регулятор для ветряного двигателя в ветроэлектрических установках 1921
  • Толмачев Г.С.
SU136A1
Дарий М.В
и др
Димерные бисбензимидазолы: цитотоксичность и влияние на метилирование ДНК в нормальных и раковых клетках человека // Молекулярная биология, 2013, N2, т
Способ очищения сернокислого глинозема от железа 1920
  • Збарский Б.И.
SU47A1
Арматура для железобетонных свай и стоек 1916
  • Бараусов М.Д.
SU259A1
Устройство для питания цепи накала катодных ламп переменным током 1930
  • Загоруйченко Г.М.
SU23466A1
WO 2015178426 A1, 26.11.2015
US 20160187320 A1, 30.06.2016.

RU 2 702 910 C2

Авторы

Чурюкина Кристина Александровна

Замулаева Ирина Александровна

Матчук Ольга Николаевна

Жузе Алексей Львович

Иванов Александр Александрович

Даты

2019-10-14Публикация

2018-12-20Подача