БУФЕРНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ СМЕЩЕНИЯ НУЛЯ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ Российский патент 2020 года по МПК H03F3/00 

Описание патента на изобретение RU2712410C1

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных усилителей и выходных каскадов в различных аналоговых устройствах (операционных усилителях, драйверах линий связи и т.п.), допускающих работу в условиях воздействия проникающей радиации и низких температур.

Известно значительное количество схем микроэлектронных двухтактных буферных усилителей (БУ), которые реализуются на комплементарных биполярных (BJT) или полевых (JFet, КМОП, КНИ, КНС и др.) транзисторах, а также при их совместном включении [1-28]. Вышеназванные схемотехнические решения БУ наиболее популярны как в зарубежных, так и в российских аналоговых микросхемах, реализуемых на основе типовых технологических процессов [1-28].

Ближайшим прототипом заявляемого устройства является буферный усилитель (фиг. 1) на комплементарных полевых транзисторах, представленный в патенте РФ 2684489, 2019 г. Схема БУ-прототипа фиг. 1 содержит вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, затвор которого соединен со входом 1 устройства, сток подключен к первой 4 шине источника питания, второй 5 входной полевой транзистор, затвор которого подключен ко входу устройства 1, а сток соединен со второй 6 шиной источника питания, токостабилизирующий резистор 7, включенный между истоками первого 3 и второго 5 входных полевых транзисторов, первый 8 и второй 9 выходные полевые транзисторы, затвор первого 8 выходного полевого транзистора соединен с истоком второго 5 входного полевого транзистора, а его сток соединен с первым 10 токовым выходом устройства, согласованным с первой 4 шиной источника питания, затвор второго 9 выходного полевого транзистора соединен с истоком первого 3 входного полевого транзистора, а его сток соединен со вторым 11 токовым выходом устройства, согласованным со второй 6 шиной источника питания.

БУ-прототип перспективен для использования в качестве выходных каскадов ОУ с потенциальной отрицательной обратной связью [29] (когда используется только выход 2 устройства), а также входных каскадов ОУ с токовой отрицательной обратной связью [28,29], когда используется первый 10 и второй 11 токовые выходы. В последнем случае к величине напряжения смещения нуля БУ предъявляются повышенные требования [28]. Однако из-за неидентичности стоко-затворных характеристик первого 3 входного и первого 8 выходного, а также второго 5 входного и второго 9 выходного полевых транзисторов, которую практически невозможно устранить технологическим путем, численные значения напряжения смещения нуля (Uсм) БУ лежат в пределах сотен милливольт [28]. Для ряда задач аналоговой микросхемотехники это недопустимо.

Основная задача предполагаемого изобретения состоит в создании радиационно-стойкого и низкотемпературного схемотехнического решения БУ на комплементарных полевых транзисторах, обеспечивающего (при высокой линейности амплитудной характеристики) малые значения напряжения смещения нуля.

Поставленная задача достигается тем, что в буферном усилителе фиг. 1, содержащем вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, затвор которого соединен со входом 1 устройства, сток подключен к первой 4 шине источника питания, второй 5 входной полевой транзистор, затвор которого подключен ко входу устройства 1, а сток соединен со второй 6 шиной источника питания, токостабилизирующий резистор 7, включенный между истоками первого 3 и второго 5 входных полевых транзисторов, первый 8 и второй 9 выходные полевые транзисторы, затвор первого 8 выходного полевого транзистора соединен с истоком второго 5 входного полевого транзистора, а его сток соединен с первым 10 токовым выходом устройства, согласованным с первой 4 шиной источника питания, затвор второго 9 выходного полевого транзистора соединен с истоком первого 3 входного полевого транзистора, а его сток соединен со вторым 11 токовым выходом устройства, согласованным со второй 6 шиной источника питания, предусмотрены новые элементы и связи – исток второго 9 выходного полевого транзистора связан с первой 4 шиной источника питания через первый 12 дополнительный источник опорного тока и подключен к выходу 2 устройства через первый 13 дополнительный резистор, а исток первого 8 выходного полевого транзистора связан со второй 6 шиной источника питания через второй 14 дополнительный источник опорного тока и связан с выходом 2 устройства через второй 15 дополнительный резистор.

Первый 10 и второй 11 токовые выходы заявляемого БУ фиг. 2 могут подключаться (в некоторых практических схемах, например, в усилителях с токовой отрицательной обратной связью [28,29]) к токовым зеркалам и другим выходным подсхемам того или иного проектируемого аналогового устройства, решающего практические задачи обработки аналоговых сигналов. В частном случае, в соответствии с п. 2 формулы изобретения, первый 10 токовый выход устройства соединен с первой 4 шиной источника питания, а второй 11 токовый выход устройства соединен со второй 6 шиной источника питания. В данном варианте построения БУ фиг. 2 токовые выходы 10 и 11 не используются, а БУ выполняет только одну функцию – согласование с источником сигнала (по величине входного сопротивления), а также передачу в нагрузку 16 входного напряжения с коэффициентом передачи, близким к единице.

На чертеже фиг. 1 представлена схема БУ-прототипа, а на чертеже фиг. 2 – схема заявляемого буферного усилителя в соответствии с п.1, п.2 формулы изобретения.

На чертеже фиг. 3 показан статический режим схемы БУ фиг. 2, оптимизированной для температуры +27°С при температуре окружающей среды +27°С, а на чертеже фиг. 4 - статический режим схемы БУ фиг. 2, оптимизированной для температуры +27°С при температуре окружающей среды -197°С.

На чертеже фиг. 5 приведена зависимость напряжения смещения нуля схемы БУ фиг. 3, оптимизированной для температуры +27°С, в диапазоне температур, а на чертеже фиг. 6 - амплитудно-частотная характеристика коэффициента усиления по напряжению схемы БУ фиг. 3, оптимизированной для температуры +27°С, при разных температурах.

На чертеже фиг. 7 представлен статический режим схемы БУ фиг. 2, оптимизированной для -197°С при температуре окружающей среды +27°С, а на чертеже фиг. 8 - статический режим схемы БУ фиг. 2, оптимизированной для -197°С при температуре -197°С.

На чертеже фиг. 9 показана зависимость напряжения смещения нуля оптимизированной схемы БУ фиг. 8 для -197°С в диапазоне температур, а на чертеже фиг. 10 - амплитудно-частотная характеристика коэффициента усиления схемы БУ фиг. 8, оптимизированной для -197°С, при разных температурах.

Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, затвор которого соединен со входом 1 устройства, сток подключен к первой 4 шине источника питания, второй 5 входной полевой транзистор, затвор которого подключен ко входу устройства 1, а сток соединен со второй 6 шиной источника питания, токостабилизирующий резистор 7, включенный между истоками первого 3 и второго 5 входных полевых транзисторов, первый 8 и второй 9 выходные полевые транзисторы, затвор первого 8 выходного полевого транзистора соединен с истоком второго 5 входного полевого транзистора, а его сток соединен с первым 10 токовым выходом устройства, согласованным с первой 4 шиной источника питания, затвор второго 9 выходного полевого транзистора соединен с истоком первого 3 входного полевого транзистора, а его сток соединен со вторым 11 токовым выходом устройства, согласованным со второй 6 шиной источника питания. Исток второго 9 выходного полевого транзистора связан с первой 4 шиной источника питания через первый 12 дополнительный источник опорного тока и подключен к выходу 2 устройства через первый 13 дополнительный резистор, а исток первого 8 выходного полевого транзистора связан со второй 6 шиной источника питания через второй 14 дополнительный источник опорного тока и связан с выходом 2 устройства через второй 15 дополнительный резистор. В схеме фиг. 2 двухполюсник 16 моделирует свойства нагрузки БУ, подключаемой к выходу 2.

На чертеже фиг. 2, в соответствии с п. 2 формулы изобретения, первый 10 токовый выход устройства соединен с первой 4 шиной источника питания, а второй 11 токовый выход устройства соединен со второй 6 шиной источника питания. Такое включение токовых выходов характерно для ОУ с потенциальной отрицательной обратной связью.

Рассмотрим работу предлагаемого БУ.

Особенность схемы БУ фиг. 2 состоит в том, что статический режим первого 3 и второго 5 входных полевых транзисторов по току определяется токостабилизирующим резистором 7, что позволяет за счет изменения его сопротивления выбирать заданные значения токов стоков (Ic3, Ic5) данных активных элементов:

где Uзи.i – напряжение затвор-исток i-го полевого транзистора при токе истока, равном IR.

Введение новых элементов и связей между ними в соответствии с п. 1 формулы изобретения позволяют получить малые значения напряжения смещения нуля в схеме БУ фиг. 2 в условиях неидентичности стоко-затворных характеристик применяемых полевых транзисторов с p- и n- каналами. Возможности такой подстройки величины напряжения смещения нуля БУ продемонстрированы в схемах фиг. 3, фиг. 4, фиг. 5, а также схемах фиг. 7, фиг. 8, фиг. 9.

За счет оптимизации (целенаправленного изменения) параметров первого 12 дополнительного источника опорного тока, первого 13 дополнительного резистора, второго 14 дополнительного источника опорного тока и второго 15 дополнительного резистора, которая была выполнена с помощью специальной САПР в среде LTspice для решения данных задач, в схеме фиг. 2 при комнатной (фиг. 3, фиг. 4, фиг. 5), а также при криогенной (фиг. 7, фиг. 8, фиг. 9) температурах могут быть получены малые Uсм (на уровне десятков микровольт, без учета технологического разброса параметров элементов). Это значительно (в сотни раз) лучше, чем в схеме БУ-прототипа фиг. 1.

При этом амплитудно-частотные характеристики коэффициентов усиления по напряжению схем БУ, оптимизированных для разных температур, существенно не изменяются (фиг. 6, фиг. 10).

Таким образом, заявляемый БУ допускает параметрическую оптимизацию параметров, например, по критерию минимизации напряжения смещения нуля, которое в реальных схемах обеспечивается за счет оптимального выбора сопротивлений первого 13 и второго 15 дополнительных резисторов, а также токов первого 12 и второго 14 дополнительных источников опорного тока. Физически данный эффект можно объяснить тем, что указанные выше элементы образуют мостовую схему, выход которой соответствует выходу 2 устройства. Другие известные БУ рассматриваемого класса таким свойством не обладают. В них из-за неидентичности напряжения отсечки полевых транзисторов с p- и n-каналами, которую невозможно устранить технологическим путем, напряжение смещения нуля БУ всегда остается достаточно большим (сотни милливольт).

Таким образом, компьютерное моделирование в среде LTspice и оптимизация заявляемой схемы БУ (фиг. 3, фиг. 4, фиг. 5, фиг. 7, фиг. 8, фиг. 9) показывает, что предлагаемый буферный усилитель, схемотехника которого адаптирована на применение в диапазоне низких температур и воздействия проникающей радиации [30,31], имеет существенные достоинства в сравнении с известными вариантами построения БУ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6.215.357, fig. 3, 2001 г.

2. Патент US 5.351.012, 1994 г.

3. Патент US 5.973.534, 1999 г.

4. Патент US 5.197.124, fig. 25, 1993 г.

5. Патент US 7.764.123, fig. 3, 2010 г.

6. Патент US № 6.268.769 fig.3, 2001 г.

7. Патент US № 6.420.933, 2002 г.

8. Патент US № 5.223.122, 1993 г.

9. Патентная заявка US № 2004/0196101, 2004 г.

10. Патентная заявка US № 2005/0264358 fig.1, 2005 г.

11. Патентная заявка US № 2002/0175759, 2002 г.

12. Патент US № 5.049.653 fig.8, 1991 г.

13. Патент US № 4.837.523, 1989 г.

14. Патент US № 5.179.355, 1993 г.

15. Патент Японии JP 10.163.763, 1991 г.

16. Патент Японии JP 10.270.954, 1992 г.

17. Патент US № 5.170.134 fig.6, 1992 г.

18. Патент US № 4.540.950, 1985 г.

19. Патент US № 4.424.493, 1984 г.

20. Патент Японии JP 6310950, 2018 г.

21. Патент US № 5.378.938, 1995 г.

22. Патент US № 4.827.223, 1989 г.

23. Патент US № 6.160.451, 2000 г.

24. Патент US № 4.639.685, 1987 г.

25. А.св. СССР 1506512, 1986 г.

26. Патент US № 5.399.991, 1995 г.

27. Патент US № 6.542.032, 2003 г.

28. M. Djebbi, A. Assi and M. Sawan. An offset-compensated wide-bandwidth CMOS current-feedback operational amplifier // CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), 2003, pp. 73-76 vol.1. DOI: 10.1109/CCECE.2003.1226347

29. N.N. Prokopenko, A.S. Budyakov, J.M. Savchenko, S.V. Korneev. Maximum rating of Voltage Feedback and Current Feedback Operational Amplifiers in Linear and Nonlinear Modes // Proceeding of the Third International Conference on Circuits and Systems for Communications – ICCSC’06, Politehnica University, Bucharest, Romania: July 6-7, 2006, pp.149-154.

30. Элементная база радиационно-стойких информационно-измерительных систем: монография / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т экономики и сервиса». - Шахты: ФГБОУ ВПО «ЮРГУЭС», 2011. - 208 с.

31. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski. The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors // 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507

Похожие патенты RU2712410C1

название год авторы номер документа
БУФЕРНЫЙ УСИЛИТЕЛЬ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2018
  • Прокопенко Николай Николаевич
  • Будяков Петр Сергеевич
  • Бугакова Анна Витальевна
  • Титов Алексей Евгеньевич
RU2684489C1
БИПОЛЯРНО-ПОЛЕВОЙ АРСЕНИД-ГАЛЛИЕВЫЙ БУФЕРНЫЙ УСИЛИТЕЛЬ 2023
  • Прокопенко Николай Николаевич
  • Жук Алексей Андреевич
  • Сергеенко Марсель Алексеевич
RU2796638C1
БУФЕРНЫЙ УСИЛИТЕЛЬ КЛАССА АВ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2020
  • Прокопенко Николай Николаевич
  • Бугакова Анна Витальевна
  • Никитина Екатерина Петровна
  • Овсепян Елена Владимировна
RU2721940C1
Буферный усилитель для работы при низких температурах 2018
  • Жук Алексей Андреевич
  • Овсепян Елена Владимировна
  • Прокопенко Николай Николаевич
RU2687161C1
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ «ПЕРЕГНУТОГО» КАСКОДА И КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРОВ 2022
  • Прокопенко Николай Николаевич
  • Чумаков Владислав Евгеньевич
  • Бугакова Анна Витальевна
  • Пахомов Илья Викторович
RU2773907C1
БИПОЛЯРНО-ПОЛЕВОЙ БУФЕРНЫЙ УСИЛИТЕЛЬ 2018
  • Овсепян Елена Владимировна
  • Жук Алексей Андреевич
  • Прокопенко Николай Николаевич
RU2677401C1
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ СМЕЩЕНИЯ НУЛЯ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ 2021
  • Чумаков Владислав Евгеньевич
  • Прокопенко Николай Николаевич
  • Пахомов Илья Викторович
  • Бугакова Анна Витальевна
RU2770913C1
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ ДВУХТАКТНОГО "ПЕРЕГНУТОГО" КАСКОДА И КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРОВ С УПРАВЛЯЮЩИМ PN-ПЕРЕХОДОМ 2022
  • Прокопенко Николай Николаевич
  • Чумаков Владислав Евгеньевич
  • Бугакова Анна Витальевна
  • Титов Алексей Евгеньевич
RU2780220C1
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР 2020
  • Жук Алексей Андреевич
  • Прокопенко Николай Николаевич
  • Титов Алексей Евгеньевич
RU2724921C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ 2021
  • Чумаков Владислав Евгеньевич
  • Павлючик Алексей Арсеньевич
  • Прокопенко Николай Николаевич
  • Пахомов Илья Викторович
  • Кунц Алексей Вадимович
RU2766861C1

Иллюстрации к изобретению RU 2 712 410 C1

Реферат патента 2020 года БУФЕРНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ СМЕЩЕНИЯ НУЛЯ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя (БУ) на комплементарных полевых транзисторах, обеспечивающего малые значения напряжения смещения нуля. Буферный усилитель содержит полевые транзисторы, токостабилизирующий резистор, дополнительные резисторы и источник питания и источники опорного тока. Предложенный БУ допускает параметрическую оптимизацию параметров по критерию минимизации напряжения смещения нуля, которое в реальных схемах обеспечивается за счет оптимального выбора сопротивлений первого и второго дополнительных резисторов, а также токов первого и второго дополнительных источников опорного тока. 1 з.п. ф-лы, 10 ил.

Формула изобретения RU 2 712 410 C1

1. Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом, содержащий вход (1) и выход (2) устройства, первый (3) входной полевой транзистор, затвор которого соединен со входом (1) устройства, сток подключен к первой (4) шине источника питания, второй (5) входной полевой транзистор, затвор которого подключен ко входу устройства (1), а сток соединен со второй (6) шиной источника питания, токостабилизирующий резистор (7), включенный между истоками первого (3) и второго (5) входных полевых транзисторов, первый (8) и второй (9) выходные полевые транзисторы, затвор первого (8) выходного полевого транзистора соединен с истоком второго (5) входного полевого транзистора, а его сток соединен с первым (10) токовым выходом устройства, согласованным с первой (4) шиной источника питания, затвор второго (9) выходного полевого транзистора соединен с истоком первого (3) входного полевого транзистора, а его сток соединен со вторым (11) токовым выходом устройства, согласованным со второй (6) шиной источника питания, отличающийся тем, что исток второго (9) выходного полевого транзистора связан с первой (4) шиной источника питания через первый (12) дополнительный источник опорного тока и подключен к выходу (2) устройства через первый (13) дополнительный резистор, а исток первого (8) выходного полевого транзистора связан со второй (6) шиной источника питания через второй (14) дополнительный источник опорного тока и связан с выходом (2) устройства через второй (15) дополнительный резистор.

2. Усилитель по п.1, отличающийся тем, что первый (10) токовый выход устройства соединен с первой (4) шиной источника питания, а второй (11) токовый выход устройства соединен со второй (6) шиной источника питания.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712410C1

БУФЕРНЫЙ УСИЛИТЕЛЬ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2018
  • Прокопенко Николай Николаевич
  • Будяков Петр Сергеевич
  • Бугакова Анна Витальевна
  • Титов Алексей Евгеньевич
RU2684489C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ПОВЫШЕННЫМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ ПО НАПРЯЖЕНИЮ 2010
  • Прокопенко Николай Николаевич
  • Серебряков Александр Игоревич
  • Косарев Владимир Владимирович
RU2419197C1
ИНСТРУМЕНТАЛЬНЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2016
  • Прокопенко Николай Николаевич
  • Игнашин Андрей Алексеевич
  • Пахомов Илья Викторович
  • Бугакова Анна Витальевна
RU2624565C1
БЫСТРОДЕЙСТВУЮЩИЙ ДРАЙВЕР КОММУТАТОРА РАЗРЯДНОГО ТОКА ЦИФРО-АНАЛОГОВОГО ПРЕОБРАЗОВАТЕЛЯ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ 2014
  • Свизев Григорий Альбертович
  • Крутчинский Сергей Георгиевич
  • Прокопенко Николай Николаевич
  • Бутырлагин Николай Владимирович
RU2572389C1
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ 2014
  • Прокопенко Николай Николаевич
  • Пахомов Илья Викторович
  • Бутырлагин Николай Владимирович
RU2566963C1
US 5444413 A, 22.08.1995.

RU 2 712 410 C1

Авторы

Прокопенко Николай Николаевич

Будяков Петр Сергеевич

Бугакова Анна Витальевна

Даты

2020-01-28Публикация

2019-07-03Подача