Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава Российский патент 2020 года по МПК B22F3/105 B33Y80/00 C22C19/05 B22F7/04 

Описание патента на изобретение RU2713255C1

Изобретение относится к области нанесения покрытий методом селективного лазерного плавления и может быть использовано для увеличения износостойкости и жаропрочности изделий из титановых сплавов, применяемых в авиационной и автомобильной промышленностях.

Известен способ формирования антифрикционных покрытий из порошковых материалов посредством их лазерного спекания на металлической поверхности (Патент 2652335, МПК B22F 3/105, С23 26/00, Опубликовано 25.04.2018), включающий нанесение слоя порошковой композиции на поверхность стального изделия, содержащей следующие компоненты, мас. %: баббит Б83 дисперсностью 5-50 мкм - основа, медь дисперсностью 0,5-1,5 мкм - 10-30, дисульфид молибдена дисперсностью 1,5-2,4 мкм - до 5, введение покрытого участка в зону лазерного излучения, его спекание в контролируемой среде защитного газа аргона и осуществление калибровки спеченной порошковой композиции по толщине.

Недостатком данного способа является необходимость калибровки спеченной порошковой композиции по толщине, связанная с неравномерностью нанесения покрытия, а также невозможность применения данного способа для формирования жаропрочных покрытий.

Известен способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом (Патент 2526909, МПК B22F 3/105, Опубликовано 27.08.2014), включающий нанесение слоя керамического порошка, проведение селективного спекания на заданных участках слоя и удаление указанного материала из неспеченных участков. Между спеченными участками керамического слоя наносят слой порошка металла или сплава той же толщины и проводят селективное спекание на этих участках. Цикл повторяют до осуществления полного формирования изделия. При этом керамика образует при спекании оболочку формируемого изделия. После каждого спекания слоя металла или сплава проводят его расплавление и/или расплавление всего объема металла или сплава, а после полного формирования изделия и кристаллизации расплавленного металла или сплава производят удаление керамики.

Недостатком данного метода является необходимость расплавления всего объема металла в процессе формирования изделия, что делает процесс экономически не эффективным и затратным.

Наиболее близким к предлагаемому техническому решению является способ изготовления покрытия на изделии методом послойного лазерного синтеза (Патент 2443506, МПК B22F 3/105, Опубликовано 27.02.2012). Изобретение относится к порошковой металлургии, в частности к технологии селективного лазерного спекания трехмерных объектов. После вакуумирования рабочего пространства осуществляют послойное лазерное спекание механоактивированного металлического порошка или механоактивированного металлического порошка и порошковой смеси металл-металл, температуры плавления которых отличаются менее чем на 40%. Спекание осуществляют импульсным лазером с частотой генерации импульсов от 20000 до 100000 Гц и временем действия импульса 100 наносекунд. Скорость кристаллизации расплавленной части порошковой частицы от 0,5 м/с до 10 м/с.Полученный материал обладает высокими механическими, триботехническими свойствами и коррозионной стойкостью.

Недостатком прототипа является то, что значительная часть порошка не плавится (до 95%), что приводит не только к наноструктурному метастабильному состоянию, но и к низкому качеству полученных покрытий, а именно высокой шероховатости и пористости.

Задачей изобретения является формирование жаропрочных покрытий, обладающих высокой микротвердостью, механическими и триботехническими свойствами.

В основе предлагаемого изобретения лежит решение задачи по формированию покрытия, состоящего из отдельных слоев жаропрочного сплава, в результате чего достигается расширение технологических возможностей повышения износостойкости и жаропрочности изделий из титана и титановых сплавов.

Технический результат предлагаемого изобретения заключается в получении композиционного покрытия с повышенными значениями твердости. Эти значения могут быть необходимы при возникновении повышенных контактных статических и динамических нагрузках на изделиях. Эффект от применения изобретения состоит в расширении возможностей использования титановых сплавов, увеличении срока их активной работы.

Технический результат изобретения достигается за счет того, что способ, включающий нанесение на поверхность титанового изделия порошковую композицию, содержащую следующие компоненты, вес.%: Аl 3,91%, Со 15,6%, Сr 11,1%, Fe 0,06%, Mo 4,48%, Nb 3,38%, Ti 2,73%, V 0,52%, W 3,19%, С 0,049%, Ni 54,981% (основа), затем вводят покрытый участок в зону воздействия лазера и проводят сканирование при следующих параметрах: мощность лазерного излучения - 325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда - аргон, стратегия сканирования - нанесение первого слоя под углом 135°, второго - под углом 90° к первому слою.

Способ реализуют следующим образом.

Покрытие формируется на подложке из титанового сплава, предварительно закрепленного в рабочей камере прибора. На заготовку размещают порошок жаропрочного никелевого сплава, уплотняют и выравнивают валиком. Затем лазерный луч сканирует обрабатываемую поверхность при следующих параметрах: мощность лазерного излучения -325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда - аргон, стратегия сканирования -нанесение первого слоя под углом 135°, второго - под углом 90° к первому слою. Обеспечивается формирование покрытий, обладающих высокой микротвердостью, механическими и триботехническими свойствами.

Пример 1 использования изобретения

1. Закрепить в рабочей камере пластину из титанового сплава.

2. Разместить мелкодисперсный порошок жаропрочного никелевого сплава, выровнять и уплотнить валиком.

3. Селективное лазерное плавление осуществляют в защитной среде аргона.

4. Сканирование проводят со следующей стратегией движения лазера - нанесение первого слоя под углом 135°, второго - под углом 90° к первому слою.

С помощью металлографических исследований было установлено, что толщина покрытия жаропрочного никелевого сплава, сформированного на подложке из титанового сплава равна 57,1±3,7 мкм.

Исследование элементного состава композиционного материала, сформированного по данному способу, проводилось на поперечных шлифах в поверхностном слое покрытия, диффузионном слое и в подложке. Установлено, что поверхностный слой в основном состоит из титана (55,5%) и никеля (21,23%). В диффузионном слое содержание титана больше (75,05%), а никеля меньше (8,47%), чем в поверхностном слое. В подложке из титанового сплава преобладающим элементом является титан (89,96%), никель отсутствует.

Пример 2 использования изобретения

Режимы нанесения покрытия те же, что и в примере 1. После получения покрытий проведены испытания на микротвердость. Измерение микротвердости проводилось в покрытии, в зоне термического влияния и в подложке на расстояниях 5, 10 и 15 мкм от границы с покрытием. Микротвердость покрытия равна 881,8±15 HV, зоны термического влияния - 839,8±22 HV, подложки на расстоянии 5 мкм - 374,6±4 HV, 10 мкм - 359,8±11 HV, 15 мкм - 337,2±6 HV. Полученные данные позволяют установить, что покрытия из жаропрочного никелевого сплава имеют микротвердость в ≈2,6 раза выше, чем микротвердость подложки из титанового сплава. Уменьшение микротвердости происходит градиентно от покрытия к подложке. Это позволяет увеличить ресурс работы изделия в 2,0…2,5 раза в условиях больших контактных давлений.

Похожие патенты RU2713255C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СПЛАВЛЕНИЕМ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2015
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Евгенов Александр Геннадьевич
  • Рогалев Алексей Михайлович
  • Василенко Светлана Александровна
  • Ходырев Никита Алексеевич
  • Сухов Дмитрий Игоревич
RU2623537C2
Способ аддитивного формирования изделия с комбинированной структурой из жаропрочного никелевого сплава с высокотемпературным подогревом 2023
  • Попович Анатолий Анатольевич
  • Борисов Евгений Владиславович
  • Полозов Игорь Анатольевич
  • Стариков Кирилл Андреевич
  • Соколова Виктория Владиславовна
  • Новиков Павел Александрович
RU2821638C1
Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления 2021
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Антипов Владислав Валерьевич
  • Бакрадзе Михаил Михайлович
  • Неруш Святослав Васильевич
  • Мазалов Павел Борисович
  • Сухов Дмитрий Игоревич
  • Ходырев Никита Алексеевич
  • Тарасов Сергей Александрович
  • Пашков Александр Игоревич
  • Асланян Гарегин Григорович
  • Шакиров Артем Ренатович
  • Тарасов Георгий Георгиевич
  • Мурысин Денис Александрович
  • Титов Семен Сергеевич
RU2767968C1
Способ изготовления изделия из никелевых сплавов с управляемой переменной структурой 2022
  • Борисов Евгений Владиславович
  • Стариков Кирилл Андреевич
  • Попович Анатолий Анатольевич
RU2810141C1
Способ изготовления заготовок послойным лазерным сплавлением металлических порошков сплавов на основе титана 2022
  • Неруш Святослав Васильевич
  • Рогалев Алексей Михайлович
  • Сухов Дмитрий Игоревич
  • Куркин Сергей Эдуардович
  • Панин Павел Васильевич
  • Рик Артур Алексеевич
RU2790493C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОКРЫТИЯ НА ИЗДЕЛИИ МЕТОДОМ ПОСЛОЙНОГО ЛАЗЕРНОГО СИНТЕЗА 2010
  • Харанжевский Евгений Викторович
  • Ипатов Алексей Геннадьевич
  • Галенко Пётр Константинович
  • Кривилёв Михаил Дмитриевич
  • Данилов Денис Анатольевич
RU2443506C2
Медьсодержащий титановый сплав и способ его получения 2023
  • Герасимов Евгений Витальевич
  • Щелканов Анатолий Николаевич
  • Гордеев Юрий Иванович
  • Зеленкова Елена Геннадьевна
  • Ясинский Виталий Брониславович
  • Зеер Галина Михайловна
RU2820186C1
СПОСОБ ПРЯМОГО ЛАЗЕРНОГО СИНТЕЗА СВЕРХУПРУГИХ ЭНДОДОНТИЧЕСКИХ ИНСТРУМЕНТОВ ИЗ НИКЕЛИДА ТИТАНА 2022
  • Чернышихин Станислав Викторович
  • Шишковский Игорь Владимирович
RU2792335C1
Способ получения износостойкого антифрикционного покрытия на подложке из стали, никелевого или титанового сплава 2023
  • Харанжевский Евгений Викторович
  • Ипатов Алексей Геннадьевич
  • Макаров Алексей Викторович
RU2826632C1
СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ 2018
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Васильева Ольга Вячеславовна
  • Никитина Ирина Владимировна
  • Петраускене Янина Валерьевна
  • Бобырь Виталий Вячеславович
RU2683612C1

Иллюстрации к изобретению RU 2 713 255 C1

Реферат патента 2020 года Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава

Изобретение относится к формированию композиционного материала в виде покрытия на поверхности изделия из титанового сплава. Способ включает нанесение на поверхность изделия порошковой композиции, содержащей следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb - 3,38, Ti - 2,73, V - 0,52, W - 3,19, С - 0,049, Ni - 54,981. Покрытый участок вводят в зону воздействия лазера, проводят послойное лазерное плавление металлического порошка. Сканирование ведут при следующих параметрах: мощность лазерного излучения - 325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда – аргон. Первый слой наносят под углом 135°, а второй - под углом 90° к первому слою. Обеспечивается формирование жаропрочных покрытий, обладающих высокой микротвердостью, механическими и триботехническими свойствами. 1 ил., 1 пр.

Формула изобретения RU 2 713 255 C1

Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава, включающий послойное лазерное плавление металлического порошка, отличающийся тем, что на поверхность изделия из титанового сплава наносят порошковую композицию, содержащую следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb - 3,38, Ti - 2,73, V - 0,52, W - 3,19, С - 0,049, Ni - 54,981, затем вводят покрытый участок в зону воздействия лазера и проводят сканирование при следующих параметрах: мощность лазерного излучения - 325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда - аргон, причем нанесение первого слоя осуществляют под углом 135°, а второго - под углом 90° к первому слою.

Документы, цитированные в отчете о поиске Патент 2020 года RU2713255C1

СПОСОБ ИЗГОТОВЛЕНИЯ ПОКРЫТИЯ НА ИЗДЕЛИИ МЕТОДОМ ПОСЛОЙНОГО ЛАЗЕРНОГО СИНТЕЗА 2010
  • Харанжевский Евгений Викторович
  • Ипатов Алексей Геннадьевич
  • Галенко Пётр Константинович
  • Кривилёв Михаил Дмитриевич
  • Данилов Денис Анатольевич
RU2443506C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО ИЗДЕЛИЯ 2013
  • Эттер, Томас
  • Шурб, Юлиус
  • Риккенбахер, Лукас Эмануэль
  • Кюнцлер, Андреас
RU2566117C2
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ИЗ ПОРОШКОВОГО МАТЕРИАЛА ЦИКЛИЧНЫМ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СИНТЕЗОМ 2013
  • Ганцев Рустем Халимович
  • Галиев Владимир Энгелевич
  • Мингажев Аскар Джамилевич
  • Кружков Вячеслав Николаевич
RU2526909C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СПЛАВЛЕНИЕМ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2015
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Евгенов Александр Геннадьевич
  • Рогалев Алексей Михайлович
  • Василенко Светлана Александровна
  • Ходырев Никита Алексеевич
  • Сухов Дмитрий Игоревич
RU2623537C2
Способ обработки поверхности сплава никелида титана 2017
  • Марков Андрей Вячеславович
  • Молин Илья Александрович
  • Башкова Ирина Олеговна
  • Решетников Сергей Максимович
  • Гильмутдинов Фаат Залалутдинович
  • Харанжевский Евгений Викторович
  • Королев Михаил Николаевич
  • Евсеев Станислав Викторович
RU2677033C1
JP 2004122490 A, 22.04.2004.

RU 2 713 255 C1

Авторы

Коновалов Сергей Валерьевич

Носова Екатерина Александровна

Смелов Виталий Геннадиевич

Осинцев Кирилл Александрович

Даты

2020-02-04Публикация

2019-09-23Подача