Способ изготовления изделия из никелевых сплавов с управляемой переменной структурой Российский патент 2023 года по МПК B22F10/28 B22F3/105 B33Y10/00 

Описание патента на изобретение RU2810141C1

Изобретение относится к области аддитивных технологий, в частности получения изделий из никелевых сплавов, с управляемым переменным размером, формой и кристаллографической ориентацией зёрен методами аддитивных технологий.

Благодаря высокой коррозионной стойкости, стойкости к окислению, усталостным деформациям и ползучести никелевые жаропрочные сплавы нашли широкое применение в авиационных, ракетных двигателях, а также в химических реакторах и установках.

Особые свойства жаропрочных никелевых сплавов объясняют их значительную востребованность в промышленности, а именно коррозионная стойкость при комнатной и повышенных температурах, химическая стойкость, износостойкость, жаростойкость и т.д.

Эксплуатация жаропрочных никелевых сплавов чаще всего происходит при температурах, близких к температурам их плавления. Это накладывает жёсткие требования к структуре сплава.

Длительное время для повышения характеристик жаропрочных сплавов на основе никеля использовали легирование большим количеством элементов. Однако в дальнейшем было обнаружено, что границы зёрен, имеющиеся в поликристаллических изделиях, оказывают негативное влияние на прочностные характеристики сплава при высоких температурах. Особенно, когда границы зёрен располагаются перпендикулярно направлению действующих усилий. Вследствие этого были разработаны технологии направленной кристаллизации, в которых формирующиеся зёрна вытянуты вдоль направления приложения усилий.

Изготовление лопаток газотурбинных двигателей из никелевых сплавов с направленной структурой широко используется в современной промышленности. Для формирования такой структуры чаще всего применяется метод Бриджмена, в котором процесс направленной кристаллизации осуществляется за счёт использования затравки и создания градиента температур в форме и его перемещения вдоль желаемого направления формирования структуры.

При реализации данного метода возникают существенно неравновесные условия кристаллизации. Помимо этого, за счёт большой разницы плотностей отдельных легирующих элементов, например Re, Ta и W в отливках может возникать химическая и структурная неоднородность. Для устранения такой неоднородности применяется термическая обработка.

Развитие методов порошковой металлургии привело к появлению новых технологий получения изделий из порошковых материалов. Одним из таких активно развивающихся направлений являются аддитивные технологии, предполагающие получение изделий из металлических порошков.

Использование аддитивных технологий для изготовления изделий из жаропрочных никелевых сплавов активно исследуется и изучается. Особенности процессов аддитивного производства создают определенные сложности и влияют на итоговые параметры свойств изделий.

Например, технология селективного лазерного плавления (СЛП) позволяет изготавливать сложнопрофильные изделия из порошкового материала жаропрочного никелевого сплава без необходимости изготовления отдельной дорогостоящей оснастки. В технологии СЛП также возможно получение направленной структуры, однако для этого необходимо создание специальных условий кристаллизации.

На текущий момент уже существует ряд научно-исследовательских и патентных публикаций, описывающих возможности получения изделий с направленной структурой из жаропрочных никелевых сплавов методами аддитивного производства.

В патенте EP2917797 описывается метод ремонта изделий с формированием направленной структуры. Для этого используется лазерная наплавка металлического порошка на поверхность изделия. При этом изделие ориентируется таким образом, чтобы направление [001] соответствовало направлению выращивания. В результате, за счёт эпитаксиальной кристаллизации рост зёрен происходит аналогично, вдоль направления [001].

Недостатком данного метода является малая высота формируемой направленной структуры, которая составляет половину высоты одного наплавленного слоя, а также необходимость в подложке с направленной структурой.

В заявке WO2021/251847 описывается разработка сплава для формирования изделий, работающих при повышенных температурах, методом селективного лазерного сплавления. С этой целью авторы публикации проводили модифицирование состава сплава с целью повышения температур сольвуса и повышение температурной стабильности гетерофазной структуры, присущей для всего объема изделия.

В патенте CN112893874 описывается метод формирования направленной и монокристаллической структуры в изделиях с помощью аддитивной технологии. Для этого используется инфракрасный подогрев поверхности слоя, расположенный в верхней части установки, с помощью которого производится подогрев и поддержание нужной температуры слоя в процессе кристаллизации. Выращивание производится на монокристаллической подложке, закреплённой на платформе. В патенте CN111872395 с этой целью применяют разогреваемую до температуры 900-1100 °C подложку, которая обеспечивает общий нагрев детали.

Главным недостатком вышеперечисленных методов является необходимость использования затравки для формирования направленной структуры в конечном изделии.

В патенте CN105705278 представлен способ изготовления элемента, включающий: нанесение металлического порошка на рабочую поверхность; направление луча от направленного источника энергии для расплавления порошка по рисунку, соответствующему слою поперечного сечения элемента; повторение этапа осаждения и плавления для создания элемента послойным образом; и во время цикла осаждения и плавления поддержание заданного температурного профиля элемента с использованием внешнего устройства терморегулирования, отдельного от направленного источника энергии, так что полученный элемент имеет направленное затвердевание или монокристаллическую микроскопическую структуру.

Селективное лазерное плавление никелевых сплавов с переходной микроструктурой представлено в публикации CN108588498 «Nickel-based gradient material and method for preparing nickel-based gradient material by using selective laser melting method», однако метод не подразумевает получение направленной микроструктуры.

В заявке WO2021130433 представлен способ изготовления лопатки, состоящей из первой и второй части, являющийся наиболее близким аналогом. Способ включает этап изготовления первой части методом литья по выплавляемой модели, заключающегося в выплавлении лопасти в подготовленной оболочковой форме по модели из удаляемого материала, с формированием монокристаллической или столбчатой структуры из первого металлического сплава, и этап формирования второй части, по существу, основания, непосредственно на первой части. Первая часть и вторая часть лопатки изготовлены из разных сплавов, вторая часть выполнена с поликристаллической микроструктурой.

Предложенный способ подразумевает гибридное производство, по существу, газотурбинной лопатки, в которой одна часть выполнена литьем в форму с формированием монокристаллической или столбчатой микроструктуры, а вторая, основание лопатки, методом аддитивного производства с образование поликристаллической микроструктуры сплава, отличного от первого металлического сплава. Кроме того, способ включает проведение дополнительной термообработки с целью гомогенизации и старения, что также увеличивает технологический цикл производства. Таким образом, технической проблемой, на решение которой направлен предлагаемый метод, является сокращение производственных операций, увеличение производительности и упрощение производства изделий из жаропрочного никелевого сплава с управляемыми переменной структурой и размером зерна.

Решение вышеуказанной технической проблемы достигается за счёт выполнения следующих этапов:

• подготавливают модель изделия, необходимую для выращивания методом СЛП;

• выделяют по меньшей мере две зоны изделия с различной ориентированностью и размером зерна;

• выбирают параметры обработки порошка методом селективного лазерного плавления в соответствии с требуемыми параметрами структуры;

• выбирают определённые значения технологических параметров изготовления, способствующие формированию требуемой структуры, загружают порошок в установку селективного лазерного плавления и устанавливают следующие параметры печати:

- для первой зоны: дистанция между проходами лазера – 0,1 мм, толщина слоя – 0,05 мм, скорость сканирования – 1200 мм/с, мощность лазера – 250 W, температура подогрева платформы – 1000 °C;

- для второй зоны: дистанция между проходами лазера – 0,15-0,2 мм, толщина слоя – 0,05 мм, скорость сканирования – 1000 мм/с, мощность лазера – 650-950 W, температура подогрева платформы – 1000 °C;

при этом сначала формируют первую зону, а затем вторую зону, а в качестве стратегии сканирования выбирают стратегию единичного сканирования или стратегию двойного сканирования.

Технический результат изобретения заключается в формировании изделия из жаропрочного никелевого сплава с управляемыми переменной структурой и размером зерна за один технологический цикл, исключающий дополнительные этапы термообработки и обслуживания установки селективного лазерного плавления.

Кроме того, способ обеспечивает повышенные прочностные свойства при повышенных температурах в зоне направленной структуры, особенно в условиях повышенных температур, и большую прочность при пониженных температурах в зоне равноосной микроструктуры. Таким образом, заявляемый способ позволяет более быстро, без дополнительных операций загрузки/разгрузки материала в камеру установки селективного лазерного плавления сформировать ранее заданную микроструктуру и свойства. Кроме того, способ позволяет получать направленную микроструктуру без использования затравки – металлической подложки, микроструктура которой соответствует определенному кристаллографическому направлению. Формируемая с использованием данного способа микроструктура позволяет обеспечивать повышенные эксплуатационные характеристики в изделиях.

Далее приведено описание настоящего изобретения, включая предпочтительные варианты выполнения, со ссылкой на сопроводительные чертежи, на которых:

Фиг. 1 – заготовка №1, полученная в результате примера 1 осуществления метода, снимок выполнен параллельно направлению выращивания;

Фиг. 2 – заготовка №2, полученная в результате примера 2 осуществления метода, снимок выполнен параллельно направлению выращивания.

Процесс получения изделий из никелевых жаропрочных сплавов с заданной переменной структурой заключается в следующем:

• выбирают порошок жаропрочного никелевого сплава с размером частиц от 15 до 100 мкм;

• загружают порошок никелевого сплава в установку селективного лазерного плавления;

• выбирают параметры обработки порошка методом селективного лазерного плавления в соответствии с необходимыми прогнозируемыми параметрами структуры. Параметры обработки включают в себя дистанцию между проходами, толщину слоя, скорость сканирования, мощность лазера, температуру подогрева платформы. Проводят математическое моделирование структуры с использованием программных средств моделирования структурообразования в процессе СЛП;

• проводят выращивание заготовок из никелевого сплава в соответствии с выбранными параметрами процесса селективного лазерного плавления:

• для первой зоны: дистанция между проходами лазера – 0,1 мм, толщина слоя – 0,05 мм, скорость сканирования – 1200 мм/с, мощность лазера – 250 W, температура подогрева платформы – 1000 °C;

• для второй зоны: дистанция между проходами лазера – 0,15-0,2 мм, толщина слоя – 0,05 мм, скорость сканирования – 1000 мм/с, мощность лазера – 650-950 W, температура подогрева платформы – 1000 °C;

при этом сначала формируют первую зону, а затем вторую зону, а в качестве стратегии сканирования выбирают стратегию единичного сканирования или стратегию двойного сканирования. В случае применения стратегии двойного сканирования первичное сканирование предварительно нанесенного порошка осуществляют при сопутствующем нагреве платформы, так что происходит нагрев как нанесенного порошка, так и формируемого изделия, а изготовление изделия начинают с формированием равноосной структуры. Осуществление предложенного способа, заключающегося в применении четко установленных параметров селективного лазерного плавления, позволяет контролировать параметры кристаллизации сплава, за счёт варьирования энергетической плотности в процессе обработки жаропрочного никелевого сплава, и контролировать тем самым скорость кристаллизации сплава и формирование структуры в процессе обработки.

В процессе сканирования слоя нанесенного порошка лазерным источником по технологии селективного лазерного плавления выбирают стратегию единичного сканирования или стратегию двукратного сканирования. Первый проход производится с целью разогрева верхней части детали с протеканием плавления нанесенного слоя порошка, что позволяет уменьшить температурный градиент и обеспечить более равновесные условия кристаллизации. Второй проход позволяет обеспечить требуемую ориентацию и размер зерен. Согласно способу, двойное сканирование производят таким образом, что второй проход осуществляют с той же мощностью лазера, что и первый, с повторением траектории сканирования. Такая обработка позволяет формировать направленную структуру без необходимости использования затравки – металлической подложки, микроструктура которой соответствует определенному кристаллографическому направлению. В процессе изготовления детали в каждом слое происходит вытягивание зёрен в направлении теплоотвода, что и приводит к созданию направленной структуры.

Традиционно в технологии СЛП скорости охлаждения расплава при кристаллизации составляют значения порядка 105 К/с. Это приводит к формированию равноосной структуры. В связи с чем изменение скорости кристаллизации осуществляют с использованием подогрева рабочей зоны, который может производиться как в области платформы, так и в области рабочей камеры установки селективного лазерного плавления, и совмещают с варьируемыми технологическими параметрами селективного лазерного плавления. Такой подход способствует уменьшению температурного градиента и управляемому формированию направленной структуры.

В процессе выращивания сначала формируют по меньшей мере две зоны (Фиг. 1), из которых одна преимущественно может характеризоваться равноосной структурой, а вторая направленной. Кроме того, одна из зон формируемой детали может характеризоваться различной степенью направленности, в частности, столбчатой или монокристаллической структурой, таким образом, можно обеспечить разную степень направленности. После изготовления проводят проверку структуры посредством оптической или электронной растровой микроскопии, рентгеновской дифрактометрии либо других, и, в случае необходимости, корректировку режимов печати.

Разработанная методика формирования деталей из жаропрочных никелевых сплавов с помощью селективного лазерного плавления может применяться для гарантированного получения бездефектных изделий высоконагруженного и высокотемпературного назначения с характеристиками, наиболее приближенными к требуемым для данных применений.

Имеется несколько примеров применения разработанного способа для получения заготовок деталей с переменной структурой методом СЛП.

Пример 1

Для исследования использовался порошок жаропрочного никелевого сплава с гранулометрическим составом 20-60 мкм, состав которого приведён в таблице 1.

Таблица 1 – Химический состав использованного жаропрочного никелевого сплава

Элемент Ni+Co Cr Fe Мо Nb+Ta Al Ti Co Содержание, % масс. 50,0-55,0 17,0-21,0 Ост. 2,80-3,30 4,75-5,50 0,20-0,80 0,65-1,15 ≤1,00 Примеси C Mn Si P S B Cu Содержание, не более % масс. 0,08 0,35 0,35 0,015 0,015 0,006 0,30

Порошок загружали в оборудование для селективного лазерного плавления и далее обрабатывали методом селективного лазерного плавления по 2 режимам для получения заготовки размером 20x20x40 мм (ДxШxВ).

Заготовку №1 получали по следующему режиму.

Зона 1 (равноосная): (с 0 по 20 мм по высоте) дистанция между проходами лазера – 0,1 мм, толщина слоя – 0,05 мм, скорость сканирования – 1200 мм/с, мощность лазера – 250 W, температура подогрева платформы – 1000 °C, однократная обработка.

Зона 2 (направленная): (с 20 по 40 мм по высоте) дистанция между проходами лазера – 0,15 мм, толщина слоя – 0,05 мм, скорость сканирования – 1000 мм/с, мощность лазера – 650 W, температура подогрева платформы – 1000 °C, однократная обработка.

Оценку сформированной структуры проводили с использованием сканирующего электронного микроскопа с дополнительным модулем дифракции обратноотражённых электронов (Electron Backscatter Diffraction, EBSD).

Пример 2

Для исследования использовался порошок жаропрочного никелевого сплава с гранулометрическим составом 20-60 мкм, состав которого приведён в таблице 1.

Таблица 2 – Химический состав использованного жаропрочного никелевого сплава

Элемент Ni+Co Cr Fe Мо Nb+Ta Al Ti Co Содержание, % масс. 50,0-55,0 17,0-21,0 Ост. 2,80-3,30 4,75-5,50 0,20-0,80 0,65-1,15 ≤1,00 Примеси C Mn Si P S B Cu Содержание, не более % масс. 0,08 0,35 0,35 0,015 0,015 0,006 0,30

Порошок загружали в оборудование для селективного лазерного плавления и далее обрабатывали методом селективного лазерного плавления по 2 режимам для получения заготовок размером 20x20x40 мм (ДxШxВ).

Заготовку №2 получали по следующему режиму.

Зона 1 (равноосная): (с 0 по 20 мм по высоте) дистанция между проходами лазера – 0,1 мм, толщина слоя – 0,05 мм, скорость сканирования – 1200 мм/с, мощность лазера – 250 W, температура подогрева платформы – 1000 °C, однократная обработка.

Зона 2 (направленная): (с 20 по 40 мм по высоте) дистанция между проходами лазера – 0,2 мм, толщина слоя – 0,05 мм, скорость сканирования – 1000 мм/с, мощность лазера – 950 W, температура подогрева платформы – 1000 °C, двукратная обработка.

Оценку сформированной структуры (Фиг. 2) проводили с использованием сканирующего электронного микроскопа с дополнительным модулем EBSD.

Таким образом, разработанный метод изготовления деталей из жаропрочных никелевых сплавов с заданной структурой позволяет получать бездефектный сплав с заданной структурой и свойствами в определённых зонах за один технологический цикл.

Похожие патенты RU2810141C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ СЛОЖНОЙ ФОРМЫ ИЗ ПОРОШКОВЫХ СИСТЕМ 2014
  • Волосова Марина Александровна
  • Тарасова Татьяна Васильевна
  • Назаров Алексей Петрович
RU2562722C1
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА TINI С ПРОГНОЗИРУЕМЫМИ СВОЙСТВАМИ С ПОМОЩЬЮ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2021
  • Попович Анатолий Анатольевич
  • Борисов Евгений Владимирович
  • Фарбер Эдуард Михайлович
  • Соколова Виктория Владиславовна
RU2772811C1
СПОСОБ ПРЯМОГО ЛАЗЕРНОГО СИНТЕЗА СВЕРХУПРУГИХ ЭНДОДОНТИЧЕСКИХ ИНСТРУМЕНТОВ ИЗ НИКЕЛИДА ТИТАНА 2022
  • Чернышихин Станислав Викторович
  • Шишковский Игорь Владимирович
RU2792335C1
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА TiNi С ПЕРЕМЕННЫМ ХИМИЧЕСКИМ СОСТАВОМ С ПОМОЩЬЮ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2022
  • Попович Анатолий Анатольевич
  • Борисов Евгений Владиславович
  • Стариков Кирилл Андреевич
  • Фарбер Эдуард Михайлович
  • Соколова Виктория Владиславовна
RU2808118C2
Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку 2018
  • Смелов Виталий Геннадиевич
  • Сотов Антон Владимирович
  • Агаповичев Антон Васильевич
  • Кяримов Рустам Равильевич
RU2674685C1
Способ изготовления деталей сложной формы гибридным литейно-аддитивным методом 2020
  • Гузеев Виктор Иванович
  • Казанский Антон Дмитриевич
  • Федоров Виктор Борисович
RU2752359C1
Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава 2019
  • Коновалов Сергей Валерьевич
  • Носова Екатерина Александровна
  • Смелов Виталий Геннадиевич
  • Осинцев Кирилл Александрович
RU2713255C1
Способ изготовления изделий селективным лазерным плавлением порошковой композиции WC-Co 2017
  • Хмыров Роман Сергеевич
  • Тарасова Татьяна Васильевна
  • Гусаров Андрей Владимирович
  • Котобан Дмитрий Валерьевич
  • Хмырова Наталья Дмитриевна
RU2669135C1
Способ получения цилиндрических армированных элементов для изготовления деталей моноколеса газотурбинного двигателя 2020
  • Петровский Павел Владимирович
  • Травянов Андрей Яковлевич
  • Лагутин Андрей Олегович
  • Татару Александр Сергеевич
  • Симонов Сергей Анатольевич
  • Гумеров Александр Витальевич
  • Рахматуллина Зиля Анасовна
RU2761530C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА С ВЫСОКОТЕМПЕРАТУРНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ НИТИНОЛА 2022
  • Попович Анатолий Анатольевич
  • Полозов Игорь Анатольевич
  • Соколова Виктория Владиславовна
RU2794908C1

Иллюстрации к изобретению RU 2 810 141 C1

Реферат патента 2023 года Способ изготовления изделия из никелевых сплавов с управляемой переменной структурой

Изобретение относится к области аддитивных технологий, в частности к получению изделий из жаропрочных никелевых сплавов с заданной структурой методом селективного лазерного плавления. Порошок жаропрочного никелевого сплава с размером частиц от 15 до 100 мкм загружают в установку селективного лазерного плавления, проводят моделирование структуры и выделяют первую и вторую зону заготовки с различной ориентированностью и размером зерна. Платформу подогревают до температуры 1000 °С и начиная с первой зоны формуют заготовку путем единичного или двойного сканирования. Первую зону заготовки формируют при дистанции между проходами лазера 0,1 мм, толщине слоя 0,05 мм, скорости сканирования 1200 мм/с и мощности лазера 250 Вт. Вторую зону заготовки формируют при дистанции между проходами лазера 0,15-0,2 мм, толщине слоя 0,05 мм, скорости сканирования 1000 мм/с и мощности лазера 650-950 Вт. Обеспечивается получение изделия с управляемыми переменной структурой и размером зерна за один технологический цикл без затравки. 2 ил., 2 табл., 2 пр.

Формула изобретения RU 2 810 141 C1

Способ аддитивного производства заготовок из жаропрочного никелевого сплава, включающий послойное формирование заготовки путем плавления порошкового слоя с использованием сканирования высокоэнергетическим пучком, отличающийся тем, что порошок жаропрочного никелевого сплава с размером частиц от 15 до 100 мкм загружают в установку селективного лазерного плавления, проводят моделирование структуры и выделяют первую и вторую зону заготовки с различной ориентированностью и размером зерна, выбирают параметры обработки порошка методом селективного лазерного плавления в соответствии с заданными параметрами структуры, платформу подогревают до температуры 1000 °С и начиная с первой зоны формуют заготовку путем единичного или двойного сканирования, при этом первую зону заготовки формируют при дистанции между проходами лазера 0,1 мм, толщине слоя 0,05 мм, скорости сканирования 1200 мм/с и мощности лазера 250 Вт, а вторую зону заготовки формируют при дистанции между проходами лазера 0,15-0,2 мм, толщине слоя 0,05 мм, скорости сканирования 1000 мм/с и мощности лазера 650-950 Вт.

Документы, цитированные в отчете о поиске Патент 2023 года RU2810141C1

WO 2021130433 A1, 01.07.2021
Прибор для установки, с надлежащим уклоном (свесом), пил в лесопильной раме 1928
  • Дюссен А.А.
SU11377A1
Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава 2019
  • Коновалов Сергей Валерьевич
  • Носова Екатерина Александровна
  • Смелов Виталий Геннадиевич
  • Осинцев Кирилл Александрович
RU2713255C1
СПОСОБ ЛАЗЕРНОГО СИНТЕЗА ОБЪЕМНЫХ ИЗДЕЛИЙ (ВАРИАНТЫ) 2000
  • Петров А.Л.
  • Шишковский И.В.
  • Щербаков В.И.
RU2212982C2
Способ аддитивного производства изделий из титановых сплавов с функционально-градиентной структурой 2018
  • Колубаев Евгений Александрович
  • Псахье Сергей Григорьевич
  • Рубцов Валерий Евгеньевич
  • Фортуна Сергей Валерьевич
  • Калашников Кирилл Николаевич
  • Калашникова Татьяна Александровна
  • Хорошко Екатерина Сергеевна
  • Савченко Николай Леонидович
  • Иванов Алексей Николаевич
RU2700439C1
WO 2017100811 A1, 22.06.2017
US 11137143 B2, 05.10.2021
Выделенное биспецифическое антитело, которое специфически связывается с CD47 и PD-L1 2021
  • Мисорин Алексей Константинович
  • Сабиров Артур Хамидович
  • Азарян Александра Дмитриевна
  • Водопьянова Татьяна Андреевна
  • Легоцкий Сергей Александрович
  • Гордеев Александр Андреевич
  • Доронин Александр Николаевич
  • Соловьев Валерий Владимирович
  • Морозов Дмитрий Валентинович
RU2815823C2

RU 2 810 141 C1

Авторы

Борисов Евгений Владиславович

Стариков Кирилл Андреевич

Попович Анатолий Анатольевич

Даты

2023-12-22Публикация

2022-12-27Подача