Способ получения сложного оксида манганита BaLnMnO Российский патент 2020 года по МПК C30B1/10 C30B1/12 C30B29/22 C30B29/68 C01G45/02 C01F11/02 C01F17/32 

Описание патента на изобретение RU2718697C1

Изобретение относится к технологии получения сложных оксидов, имеющих слоистую структуру Руддлесдена-Поппера (РП) и относящихся к гомологической фазе АО⋅(ABO3)2.

Эти соединения обладают уникальными электрическими, магнитными свойствами. Актуально стоит задача разработки условий синтеза сложных оксидов, обладающих заданными физико-химическими свойствами, и исследование устойчивости этих оксидов при изменении внешних параметров. Электронные свойства этих оксидов связаны с возможностью изменения степени окисления марганца и размером иона редкоземельного элемента. Различная степень окисления марганца может быть обусловлена различным содержанием кислорода (величина δ в формуле). Варьировать содержание кислорода в образцах можно изменением давления кислорода при изотермическом отжиге материалов или изменением температуры заключительного отжига, при фиксированном давлении кислорода в газовой среде. Поэтому, основными параметрами оказывающими влияние на структуру и гомогенность соединений сложных оксидов являются температура, газовая атмосфера синтеза и его продолжительность.

Известен способ получения сверхпроводящего материала MBa2Cu3O7-х, где М - редкоземельный металл из группы Y, Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb, Lu, в котором смесь нитрата бария, оксида меди и оксида редкоземельного металла из указанной группы в атомном соотношении М:Ва:Cu = 1:2:3, нагревают в тигле из золота или серебра до 850-960°C, причем, в области температур выше 600-640°C нагревание ведут со скоростью 50-100°C/ч., затем расплав выдерживают при 850-960°C 1-3 ч., охлаждают в кислородсодержащей атмосфере со скоростью 50-100°C/ч. до температуры 350-450°C и выдерживают при этой температуре 1-10 ч. Далее охлаждают до комнатной температуры, извлекают из тигля, оставляя загрязненную часть на стенках и дне. Продукт размалывают, просеивают, прессуют и отжигают при 940-960°C 1-3 ч.. Затем просеивают и охлаждают до температуры 350-450°C со скоростью 50-10°C/ч. Выдерживают при этой температуре 1-10 ч. и охлаждают до комнатной температуры (патент РФ №2104939, МПК C01F 17/00, оп. 20.02.1998).

Недостатком способа является многочисленность операций термообработки и значительная общая длительность его осуществления. Используемые температуры термообработки не позволят получить сложные оксиды общей формулы BaLn2Mn2O7+δ, где в качестве лантаноида выбраны (Nd, Pr, Gd).

Известен способ получения сложного оксида редкоземельного элемента, молибдена и теллура, состава Ln2MoTe4O14, где (Ln=Pr, Nd) (Hai-Long Jiang, En Ma, and Jiang-Gao Mao. New Luminescent Solids in the Ln-W(Mo)-Te-O-(Cl) Systems // Inorganic Chemistry. 2007, 46 (17), 7012-7023). Для его получения смесь Ln2O3 (Ln=Pr, Nd), МоО3 и TeO2, взятых в количествах 0,083:0,036:0,240 г. для получения Pr2(MoO4)(Te4O10 и 0,06:0,051:0,223 г. (для получения Nd2(MoO4)(Te4O10), соответственно, нагревают в вакуумированной кварцевой ампуле в течение 6 суток при температуре 750°C (720°C), охлаждают до температуры 350°C (300°C) скоростью 3,5°C/час (3°C/час), с последующим охлаждением до комнатной температуры с печью.

Существенными недостатками способа являются применение низкой температуры, при которой невозможно формирование сложного оксида BaLn2Mn2O7+δ (Ln=Nd, Pr, Gd), недостаточно низкое давление при синтезе и высокая продолжительность процесса.

Известен способ получения сложного оксида BaNd2Mn2O7 (J. Meng, H. Satoh, M. Ishida, N. Kamegashira Phase transition of BaNd2Mn2O7 // J. of Alloys and Compounds. 2006. 408-412. 1182-1186.). Исходные компоненты BaCO3, Nd2O3 и Mn2O3 смешивали в соответствующем молярном соотношении, прессовали в таблетки и отжигали при температуре 1423 K в течение 24 ч., затем последовательно нагревали при 1623 К в течение 72 ч. и медленно охлаждали до комнатной температуры. Процесс термообработки проводили в атмосфере аргона. Результатом синтеза является поликристаллический образец BaNd2Mn2O7, имеющий орторомбическую структуру, принадлежащий к пространственной группе Fmmn.

К недостаткам этого способа можно отнести достаточно высокую температуру отжига на обеих стадиях синтеза и значительную общую продолжительность процесса.

Наиболее близким по совокупности существенных признаков можно считать способ получения сложного оксида манганита BaLn2Mn2O7 (H. Nakano, Н. Satoh, N. Kamegashira, and N. Ishizawa Phase behavior of layered manganites BaLn2Mn2O7 (Ln = rare earth) // Phys. Stat, sol.(c). 2006. N. 8. 2812-2815.). Исходные компоненты BaCO3, Ln2O3 и Mn2O3 смешивали в соответствующем молярном соотношении, прессовали в таблетки и отжигали при температуре 1073 K в течение 12 ч. в атмосфере Ar, с одновременным удалением продукта реакции CO2, затем последовательно нагревали при 1623 К в течение 48 ч. в той же газовой атмосфере и постепенно охлаждали до комнатной температуры.

В результате были получены монокристаллы и поликристаллические образцы BaLn2Mn2O7, где (Ln=Pr, Nd, Sm, Eu, Gd, Tb), имеющие различную структуру от орторомбической до тетрагональной.

К недостаткам этого способа можно отнести достаточно высокую температуру отжига на второй стадии синтеза, образование газа CO2 и необходимость его отведения, а также невозможность формирования заданной нестехиометрии сложных оксидов.

Таким образом, перед авторами стояла задача разработки способа получения сложного оксида манганита BaLn2Mn2O7+δ в гомогенном состоянии, с определенной кристаллической структурой и возможностью изменения нестехиометрии.

Техническим результатом предлагаемого способа является сокращение трудоемкости процесса, снижение температуры отжига на второй стадии, а также расширение возможностей способа - формирование определенной кислородной нестехиометрии за счет поддержания заданного значения парциального давления кислорода в газовой атмосфере при отжиге, повышение качества получаемого соединения сложного оксида с заданным значением кислородного индекса.

Указанный технический результат достигается тем, что в способе получения сложного оксида манганита BaLn2Mn2O7+δ, где Ln выбран из группы Nd, Pr, Gd, включающем подготовку шихты, содержащей оксид марганца, оксид редкоземельного металла и барийсодержащий компонент, смешиванием исходных компонентов в определенном соотношении, прессование полученной смеси в таблетки и последующий двухстадийный отжиг в газовой среде, согласно изобретению в качестве барийсодержащего компонента в шихте используют оксид бария, указанные компоненты взяты соответственно атомному соотношению Ba:Ln:Mn=1.0:1.9:2.0, а отжиг проводят в кислородсодержащей газовой среде при поддержании заданного значения давления кислорода в диапазоне Ро2=10-5.0÷10-5,2 (атм), при этом на первой стадии нагревают до температуры 1173 К и выдерживают в течение 24 часов, а на второй стадии - до температуры 1573 К и выдерживают в течение 48 часов. Кроме того, в качестве газовой среды используют смесь из инертного газа аргона и кислорода.

В отличие от прототипа, в качестве исходного компонента смеси содержащего барий используют оксид ВаО. Это позволяет избежать образования газа CO2 в процессе синтеза и необходимости его отвода. Условия термической обработки (температура и время) подобраны экспериментально. Температура первой стадии отжига составляет 1173 К, продолжительность термической обработки - 24 ч. На этой стадии происходит образование центров основной фазы и фаз Ln0.7Ва0.3MnO3 и Ln2O3 Увеличение продолжительности прокаливания не приводит к получению гомогенного продукта синтеза или увеличению центров образования основной фазы и поэтому нецелесообразно. При температуре ниже 1173 К количество центров целевой фазы снижается. На второй стадии отжига нагрев ведут до температуры 1573 К и выдерживают в течение 48 ч., при этом происходит окончательное формирование целевой фазы.

Кислородная нестехиометрия оксидных соединений оказывает существенное влияние на их практические свойства. Формирование кислородной нестехиометрии сложного оксида BaLn2Mn2O7+δ возможно за счет изменения соотношения разновалентных ионов марганца. Одним из способов достижения требуемого соотношения Mn3+/Mn4+ является поддержание заданной величины парциального давления кислорода в процессе синтеза. Это позволяет создать продукт с необходимой величиной кислородного индекса. Кислородная нестехиометрия оксида BaLn2Mn2O7+δ (Ln=Nd, Pr, Gd), полученного при давлении в диапазоне Ро2=10-5,0÷10-5,2 (атм.) составляет δ=0.03. Выбранный интервал давления кислорода в газовой атмосфере не приводит к изменению кислородной нестехиометрии, параметры и объем ячейки при этом меняются незначительно. Дальнейшее понижение давления приводит к формированию стехиометрического по содержанию кислорода оксида, но значительное понижение в интервале Ро2=10-12,0÷10-19,0 - к диссоциации образца по схеме:

BaLn2Mn2O7+δ→Nd0.7Ba0.3MnO3+Nd2O3+↑O2→ВаО+Nd2O3+MnO+↑O2

Фазовый состав полученных образцов исследовался при помощи рентгенографического метода на дифрактометре Shimadzu XRD 7000С.

По результатам рентгенофазового анализа основным продуктом синтеза на первой стадии отжига является целевая фаза BaLn2Mn2O7+δ (Ln=Nd, Pr, Gd), а также идентифицируется примесная фаза оксида редкоземельного металла Ln2O3 и следы оксида марганца Mn2O3 (фиг. 1а, представлено на примере оксида BaNd2Mn2O7+б). Для получения гомогенного продукта необходимо изменить содержание того компонента, который присутствует дополнительно к основной фазе. Поэтому соотношение исходных компонентов скорректировано так, чтобы выполнялось условие атомного соотношения Ba:Nd:Mn=1.0:1.9:2.0 (фиг. 1 б).

Предлагаемый способ осуществляют следующим образом:

Расчет навесок исходных компонентов смеси для получения готового продукта планируемой массы 5 г. проведен согласно схеме общего вида (1)

где: Ln2O3(Nd2O3, Pr6O11, Gd2O3), по формуле:

mк=mп⋅k⋅Мкп,

где: mк - масса компонента (ВаО, Ln2O3, Mn2O3),

mп - масса продукта (BaLn1,9Mn2O7+δ),

k - коэффициент при компоненте,

Мк - молекулярная масса компонента,

Мп - молекулярная масса продукта.

Вычисленные массы исходных компонентов представлены в таблице 1.

Подготовленные исходные компоненты ВаО, Ln2O3 (Ln=Nd, Pr, Gd) и Mn2O3, взятые в атомном отношении Ва:Ln:Mn=1,0:1,9:2,0 смешивали. Из полученной смеси прессовали таблетки на гидравлическом прессе под давлением 150 кПа/см2. Процесс синтеза осуществляли в герметичном реакторе из Al2O3, в котором установлен контейнер из Al2O3 с вкладышем из Pt, во избежании контакта контейнера и таблетированной смеси исходных компонентов. Для отжига реактор помещают в изотермическую зону печи. Газовую смесь с определенным, контролируемым на протяжении всего опыта значением давления кислорода подают непосредственно в реактор. Двухстадийный отжиг проводили в кислородсодержащей газовой среде при поддержании заданного значения давления кислорода в диапазоне Ро2=10-5,0÷10-5,2 (атм): на первой стадии при температуре 1173 К в течение 24 ч., затем нагревают до температуры 1573 К и выдерживают при этой температуре в течение 48 ч. Охлаждение образцов до комнатной температуры проводили с печью со скоростью 3 град/мин.

Таким образом, сложные оксиды BaLn2Mn2O7+δ, где (Ln=Nd, Pr, Gd), полученные двухстадийным отжигом при описанных условиях в кислородсодержащей газовой атмосфере с парциальным давлением кислорода Ро2=10-5.0÷10-5,2 (атм) являются гомогенными. BaNd2Mn2O7+δ, имеет орторомбическую структуру и принадлежит к пространственной группе Fmmm (фиг. 2 а). Сложные оксиды BaLn2Mn2O7+δ, где (Ln=Pr, Gd) имеют тетрагональную кристаллическую структуру, пространственная группа I4/mmm (фиг. 2 б, в). Выбранный нами интервал парциального давления кислорода при синтезе сложных оксидов манганитов BaLn2Mn2O7+δ позволяет получить оксиды с определенной устойчивой кислородной нестехиометрией (таблица 2).

Похожие патенты RU2718697C1

название год авторы номер документа
Способ получения сложного оксида лютеция и железа LuFeO 2018
  • Ведмидь Лариса Борисовна
  • Димитров Владислав Михайлович
  • Федорова Ольга Михайловна
  • Петрова Софья Александровна
RU2698689C1
Способ получения индатов редкоземельных элементов P3ЭInO 2018
  • Новоженов Владимир Антонович
  • Новоженов Александр Владимирович
  • Белова Ольга Владимировна
RU2688606C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ ДИОКСОСУЛЬФИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ LnOS И ТВЕРДЫХ РАСТВОРОВ НА ИХ ОСНОВЕ Ln'OS-Ln''OS ( Ln, Ln', Ln''=Gd-Lu, Y) 2013
  • Андреев Петр Олегович
  • Сальникова Елена Ивановна
RU2554202C2
Способ получения селенидов (Sr,Eu)LnCuSe (Ln = La, Nd, Sm, Gd-Lu, Sc, Y) ромбической сингонии 2021
  • Русейкина Анна Валерьевна
  • Григорьев Максим Владимирович
  • Соловьёв Леонид Александрович
  • Молокеев Максим Сергеевич
  • Матигоров Алексей Валерьевич
  • Третьяков Николай Юрьевич
  • Остапчук Евгений Анатольевич
  • Елышев Андрей Владимирович
RU2783926C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ТВЕРДЫХ РАСТВОРОВ ОКСИСУЛЬФИДОВ ЛАНТАНА, НЕОДИМА, ПРАОЗЕОДИМА И САМАРИЯ 2011
  • Гельмель Николай Леонидович
  • Андреев Петр Олегович
RU2496718C2
Способ жидкофазного синтеза нанокерамических материалов в системе LaO-MnO-NiO для создания катодных электродов твердооксидного топливного элемента 2020
  • Калинина Марина Владимировна
  • Арсентьев Максим Юрьевич
  • Федоренко Надежда Юрьевна
  • Шилова Ольга Алексеевна
RU2743341C1
Способ получения поликристаллов четверных соединений ALnAgS(A = Sr, Eu; Ln = Dy, Ho) 2018
  • Кольцов Семен Игоревич
  • Русейкина Анна Валерьевна
  • Андреев Олег Валерьевич
  • Пинигина Анна Евгеньевна
  • Тургуналиева Дарья Маратовна
  • Рогалева Галина Алексеевна
  • Денисенко Юрий Григорьевич
RU2679244C1
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК КИСЛОРОДА 2013
  • Каминский Владимир Васильевич
  • Казаков Сергей Александрович
RU2546849C2
СПОСОБ ПОЛУЧЕНИЯ ПЕРОВСКИТОВ 2009
  • Яковлева Ирина Сергеевна
  • Исупова Любовь Александровна
RU2440292C2
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА ИТТЕРБИЯ И ЖЕЛЕЗА YbFeO 2015
  • Янкин Александр Михайлович
  • Ведмидь Лариса Борисовна
  • Козин Владислав Михайлович
RU2592899C1

Иллюстрации к изобретению RU 2 718 697 C1

Реферат патента 2020 года Способ получения сложного оксида манганита BaLnMnO

Изобретение относится к технологии получения сложных оксидов, имеющих слоистую структуру Руддлесдена-Поппера (РП) и относящихся к гомологической фазе АО⋅(АВО3)2. Способ получения сложного оксида манганита BaLn2Mn2O7+δ, где Ln выбран из группы Nd, Pr, Gd, включает подготовку шихты, содержащей оксид марганца, оксид редкоземельного металла и оксид бария, смешивание исходных компонентов, прессование полученной смеси в таблетки и последующий двухстадийный отжиг в газовой среде, при этом указанные компоненты взяты соответственно атомному соотношению Ba:Ln:Mn=1,0:1,9:2,0, а отжиг проводят в кислородсодержащей газовой среде при поддержании заданного значения давления кислорода в диапазоне Ро2=10-5,0÷10-5,2 атм, причем на первой стадии нагрев осуществляют до температуры 1173К с выдержкой в течение 24 часов, а на второй стадии - до температуры 1573К с выдержкой в течение 48 часов. В качестве газовой среды может быть использована смесь из инертного газа аргона и кислорода. Способ позволяет получать сложные оксиды с устойчивой кислородной нестехиометрией и гомогенные по химическому составу. 1 з.п. ф-лы, 2 ил., 2 табл.

Формула изобретения RU 2 718 697 C1

1. Способ получения сложного оксида манганита BaLn2Mn2O7+δ, где Ln выбран из группы Nd, Pr, Gd, включающий подготовку шихты, содержащей оксид марганца, оксид редкоземельного металла и барийсодержащий компонент, смешиванием исходных компонентов в определенном соотношении, прессование полученной смеси в таблетки и последующий двухстадийный отжиг в газовой среде, отличающийся тем, что в качестве барийсодержащего компонента в шихте используют оксид бария, указанные компоненты взяты соответственно атомному соотношению Ba:Ln:Mn=1,0:1,9:2,0, а отжиг проводят в кислородсодержащей газовой среде при поддержании заданного значения давления кислорода в диапазоне Ро2=10-5,0÷10-5,2 атм, при этом на первой стадии нагревают до температуры 1173К и выдерживают в течение 24 часов, а на второй стадии - до температуры 1573К и выдерживают в течение 48 часов.

2. Способ по п. 1, отличающийся тем, что в качестве газовой среды используют смесь из инертного газа аргона и кислорода.

Документы, цитированные в отчете о поиске Патент 2020 года RU2718697C1

HIROMI NAKANO et al
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
C", 2006, Vol.3, No.8, pp 2812-2815
NAOKI KAMEGASHIRA et al
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
JIAN MENG

RU 2 718 697 C1

Авторы

Ведмидь Лариса Борисовна

Федорова Ольга Михайловна

Димитров Владислав Михайлович

Даты

2020-04-14Публикация

2019-07-30Подача