Изобретение относится к гироскопической технике и может найти применение в составе одноосных или двухосных гировертикалей, построенных на базе силовых гироскопических стабилизаторов и совершающих движение близкое к горизонтальному.
Известен маятниковый чувствительный элемент ДЖМ-9Б, который применяется в гировертикалях, например в МГВ-1С, МГВ-2, в качестве элемента коррекции. Конструкция его состоит из стеклянного герметичного цилиндра, частично заполненного токопроводящей жидкостью. В цилиндр вварены три контакта: один, центральный, находится всё время в жидкости, два других контакта частично покрыты жидкостью и при наклонах корпуса ДЖМ-9Б относительно плоскости местного горизонта изменяют свои переходные сопротивления, что и является выходным параметром этого датчика. ДЖМ-9Б включается в цепи продольной и поперечной коррекций гировертикалей.
Однако при действии линейных ускорений и, в частности, при центростремительных ускорениях при виражах (разворотах) жидкость внутри ДЖМ-9Б отклоняется к ложной вертикали, что приводит к выдаче ложного сигнала и, следовательно, к значительным погрешностям в определении углов ориентации.
Для сравнительного анализа взят датчик акселерометра с поплавковым подвесом ДА-1, который состоит из поплавкового узла с нижней маятниковостью и с полуосями подвеса, установленными в корпусе. Внутри подвеса находится рамка со смещённым для создания нижней маятниковости центром масс, при этом к поплавковому узлу крепится ротор датчика угла и ротор датчика момента, статоры которых крепятся в корпусе, к которому жёстко прикреплён сильфон для компенсации изменения объёма жидкости, заполняющей внутреннюю полость между поплавковым узлом и корпусом. Для измерения ускорения (например, с целью измерения угла отклонения от вертикали) датчик угла подключается к датчику момента через усилитель.
Недостатком данного устройства, взятого за прототип, является принципиальная невозможность устранять погрешности на вираже (при разворотах) при измерении угла отклонения от вертикали, так как при действии центростремительного ускорения на вираже возникает инерционный момент, который отклоняет поплавковый узел к ложной вертикали. Виражные погрешности существенно снижают точность сигнала отклонения от местного горизонта (вертикали).
Техническим результатом изобретения является повышение точности формирования выходного сигнала отклонения от местного горизонта (вертикали).
Технический результат достигается тем, что в гироскопическом маятнике, содержащем поплавковый узел с нижней маятниковостью, установленным своими полуосями в корпусе гиромаятника и состоящем из рамки, помещённой в поплавковый узел, с которой жёстко связан ротор датчика угла, а статор – с корпусом гиромаятника, на котором жёстко закреплён сильфон, полость которого и полость между корпусом и поплавковым узлом заполнены жидкостью, новым является то, что в рамке поплавкового узла установлен гиромотор, который подключён к контуру управления скоростью вращения ротора гиромотора, состоящему из последовательно соединённых датчика линейной скорости подвижного объекта и масштабного усилителя и регулирующему угловую скорость ротора гиромотора в соответствии с формулой
где
Сущность изобретения поясняется фигурами, где фиг. 1 – продольный разрез гироскопического маятника, фиг. 2 – поперечный разрез гироскопического маятника, являющийся разрезом «А-А» на фиг. 1. На фиг.1, 2 приняты следующие обозначения:
1 – корпус гиромаятника;
2 – поплавковый узел гиромаятника;
3 – рамка поплавкового узла гиромаятника;
4 – ротор гиромотора гиромаятника;
5 – ротор датчика угла поворота поплавкового узла гиромаятника;
6 – статор датчика угла поворота поплавкового узла гиромаятника;
7 – грузики для создания нижней маятниковости;
8 – жидкость;
9 – сильфон;
10 – датчик линейной скорости объекта;
11 – масштабный усилитель;
12 – полуоси подвеса поплавкового узла;
Гироскопический маятник построен на основе поплавкового датчика акселерометра, состоящего из корпуса 1, заполненного жидкостью 8, поплавкового маятникового узла 2, установленного полуосями подвеса 12 в корпусе прибора. Датчик угла
Гиромаятник работает следующим образом. При движении по криволинейной траектории в плоскости горизонта в системе отсчёта связанной с устройством на гиромаятник действуют гироскопический момент, момент силы инерции и момент силы тяжести, показанные на фиг. 1 и фиг. 2. На фиг. 1 и фиг. 2 изображён левый разворот, причём на фиг.2 поплавковый маятниковый элемент 2 показан повёрнутым на угол
где ∑MX1 – сумма проекций моментов, действующих на гиромаятник, по оси
По основному уравнению динамики вращательного движения запишем дифференциальное уравнение вращения для поплавкового маятникового узла
где
С учётом выражения для ∑MX1 уравнение поплавкового маятникового узла запишется в виде:
Чтобы угловая скорость виража
которое можно назвать условием инвариантности гиромаятника к угловой скорости виража.
Так как кинетический момент ротора гиромотора гиромаятника определяется по формуле
где
Это условие подчёркивает тот факт, что угловой скоростью вращения ротора гиромотора гиромаятника необходимо управлять пропорционально скорости движения подвижного объекта, а реализуется это условие с помощью контура управления скоростью вращения ротора гиромотора, состоящего из последовательно соединённых датчика линейной скорости объекта 10 и масштабного усилителя 11.
Таким образом, независимо от виража поведение гиромаятника будет описываться уравнением
которое подчёркивает, что при движении по криволинейной траектории в плоскости горизонта виражные погрешности у гиромаятника отсутствуют.
Следовательно, и цепь коррекции гировертикали, в которой сигнал гиромаятника используется в качестве сигнала коррекции, тоже будет работать без виражных погрешностей.
Реализация устройства.
Чтобы иметь возможность регулировать угловую скорость
Вариант 1.
Вариант 2.
можно определить массу, момент инерции ротора и его угловую скорость
Полученные значения угловой скорости вполне реализуемы как для гиромоторов, построенных на основе двигателей постоянного тока, так и переменного с частотным управлением.
Таким образом, если в гиромаятнике скомпенсированы виражные погрешности, то погрешность формирования горизонтальной плоскости будет определяться в основном моментом дрейфа
В прототипе угол отклонения ложной вертикали фактически измеряется и определяется величиной
которую можно трактовать как погрешность и которая составляет 3̊ при
Кроме того, областью применения корректирующего устройства в виде гиромаятника могут быть силовые гировертикали для подвижных объектов, совершающих движение близкое к горизонтальному. Это, к примеру, корабли, подводные лодки, путеизмерители.
Применение предложенной схемы построения гиромаятника позволяет существенно снизить виражные погрешности в выходном сигнале гиромаятника за счёт компенсации инерционного момента на вираже гироскопическим моментом путём введения контура управления скоростью вращения ротора гиромотора пропорционально скорости движения подвижного объекта.
название | год | авторы | номер документа |
---|---|---|---|
Гироскопический маятник | 2020 |
|
RU2747913C1 |
Одноосный силовой горизонтальный гиростабилизатор | 2019 |
|
RU2716599C1 |
СПОСОБ ИЗМЕРЕНИЯ УГЛОВ ПОВОРОТА ДВИЖУЩЕГОСЯ С УСКОРЕНИЕМ АППАРАТА С ПОМОЩЬЮ ГИРОВЕРТИКАЛИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2138017C1 |
Одноосный индикаторный горизонтальный гиростабилизатор | 2020 |
|
RU2750027C1 |
Одноосный силовой горизонтальный гиростабилизатор | 2020 |
|
RU2748143C1 |
Установка для настройки одноосного силового горизонтального гиростабилизатора малогабаритного путеизмерительного устройства в лабораторных условиях | 2020 |
|
RU2743640C1 |
ГИРОСКОПИЧЕСКИЙ ДАТЧИК КРЕНА | 2003 |
|
RU2264597C2 |
УСТРОЙСТВО КОРРЕКЦИИ ГИРОВЕРТИКАЛИ | 1998 |
|
RU2145057C1 |
Выключатель цепей коррекции гироскопических приборов ориентации на вираже | 2021 |
|
RU2759245C1 |
Гироскопическое устройство индикации истинной вертикали | 1977 |
|
SU671477A1 |
Изобретение относится к гироскопической технике. Сущность изобретения заключается в том, что в рамке поплавкового узла гироскопического маятника установлен гиромотор, который подключён к контуру управления скоростью вращения ротора гиромотора, состоящему из последовательно соединённых датчика линейной скорости подвижного объекта и масштабного усилителя и регулирующему угловую скорость ротора гиромотора в соответствии с формулой
Гироскопический маятник, содержащий поплавковый узел с нижней маятниковостью, установленный своими полуосями в корпусе гиромаятника и состоящий из рамки, помещённой в поплавковый узел, с которой жёстко связан ротор датчика угла, а статор – с корпусом гиромаятника, на котором жёстко закреплён сильфон, полость которого и полость между корпусом и поплавковым узлом заполнены жидкостью, отличающийся тем, что в рамке поплавкового узла установлен гиромотор, который подключён к контуру управления скоростью вращения ротора гиромотора, состоящему из последовательно соединённых датчика линейной скорости подвижного объекта и масштабного усилителя и регулирующему угловую скорость ротора гиромотора в соответствии с формулой
где
ДЕМОНСТРАЦИОННЫЙ ГИРОСКОП | 2011 |
|
RU2462761C1 |
Конструкция сварного соединения взаимно перпендикулярных железобетонных плит | 1948 |
|
SU81188A1 |
GB 2056062 A, 11.03.1981 | |||
Система сегментации изображений зданий и сооружений | 2019 |
|
RU2734058C1 |
Авторы
Даты
2020-04-17—Публикация
2019-06-13—Подача