Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления Российский патент 2020 года по МПК B23K26/342 B23K26/144 C23C4/12 C23C24/08 

Описание патента на изобретение RU2728450C1

Изобретение относится к аддитивным технологиям (технология Selective laser melting, SLM, селективное лазерное сплавление, СЛС), а именно к изготовлению деталей из алюминиевых сплавов, и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем.

Известен алюминиевый материал для аддитивных технологий (патент РФ №2688039, МПК С22С 21/02, опубл. 17.05.2019), относящееся к области металлургии, прежде всего к составу и технологии получения заготовок и деталей из материалов на основе алюминия, в т.ч. с использованием технологий селективного лазерного сплавления. Сплав на основе алюминия содержит, мас. %: Si 10,0-14,0; Mg 0,3-1,0; Cu 0,3-1,0; Мn 0,3-1,0; Ti 0,12-0,30; Fe 0,1-0,50; Al - остальное. Порошок, полученный из указанного алюминиевого сплава распылением расплава, имеет средний размер частиц от 20 до 150 мкм и предназначен для изготовления изделий аддитивной технологией.

Недостатком данного изобретения является большой диапазон распределения гранулометрического состава порошкового материала. Толщина слоя в технологии SLM составляет от 20 до 100 мкм (Tomasz Kurzynowski, Edward Chlebus, Bogumila Kuznicka, and Jacek Reiner "Parameters in selective laser melting for processing metallic powders", Proc. SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications, 823914 (6 February 2012) и патент WO2013179017A1), и наличие более крупной фракции может привести к образованию дефектного слоя. Металлический порошок используемый в технологии СЛС также должен быть сферичным.

Известно изобретение (международная заявка WO 2013179017А1, МПК B22F 3/105, В29С 67/00, С22С 1/04, С22С 21/00), в котором предлагается изготавливать металлические изделия с использованием технологий аддитивного производства. Патент включает в себя способ изготовления изделия, включающий селективное плавление и/или спекание порошка на основе алюминия с содержанием висмута. В патенте представлены значения основных технологических параметров применяемых при изготовлении изделий.

Недостатком данного изобретения является использование низкой скорости сканирования и мощности лазерного излучения, что приводит к росту материальных и временных затрат при изготовлении изделий из алюминиевых сплавов.

Технический результат - получение функциональных деталей технологией селективного лазерного сплавления, высокие механические характеристики деталей достигаемые за счет применения оптимальных технологических параметров обработки, высокая плотность деталей за счет применения оптимальных технологических параметров обработки, высокая производительность процесса за счет применения высокой скорости сканирования, низкий уровень остаточных напряжений, и как следствие, высокая точность размеров и расположения поверхностей, существенное повышение коэффициента использования материала (КИМ).

Технический результат достигается за счет того, что изготовление деталей технологией селективного лазерного сплавления проводят при оптимальных технологических параметрах, а именно мощность лазерного излучения от 330 до 350 Вт, скорость сканирования от 900 до 930 мм/с, толщина слоя 50 мкм и шаг сканирования 0,19 мм.

Технический результат достигается за счет того, что при применении оптимальных технологических параметров изготовления деталей технологией селективного лазерного сплавления достигается высокая плотность материала за счет подвода оптимального количества энергии. Так, например, при использовании не оптимальных технологических параметров (низкой мощности лазерного излучения совместно с высокой скоростью сканирования) не будет подводиться достаточной энергии для полного расплавления порошка что не позволяют получить хорошей зоны перекрытия между слоями и соседними векторами сканирования. При использовании режимов с высокой мощностью лазерного излучения и низкой скоростью сканирования, на материал будет подаваться избыточное количество теплоты, и плавление материала будет происходить в режиме, который называется «замочной скважиной». При этом режиме лазерный луч локально создает температуру достаточную для испарения материала, что приводит к возникновению высокой пористости материала и, как следствие, к его низким механическим свойствам.

Изобретение поясняется следующими чертежами.

На фиг. 1 изображен график распределения гранулометрического состава порошкового материала.

На фиг. 2 изображено образование зоны перекрытия между векторами сканирования.

На фиг. 3 изображены углы расположения образцов относительно платформы построения и дозатора.

Предлагаемый способ отличается от известных тем, что изготовление деталей производят послойно из металлического порошка гранулометрического состава. Используемый сплав на основе алюминия содержит, мас. %: Si 11,8; Mg 0,43; Al - остальное. Изготовление деталей технологией селективного лазерного сплавления происходит при следующих технологических параметрах: мощность лазерного излучения от 330 до 350 Вт, скорость сканирования от 900 до 930 мм/с, толщина слоя 50 мкм и шаг сканирования 0,19 мм.

Использование в технологии селективного лазерного сплавления указанных технологических режимов позволяют полностью сплавлять металлический порошок алюминиевого сплава, создавая зону перекрытия между векторами сканирования на уровне 40...50%, что положительно сказывается на механических свойствах материала.

Предлагаемым способом были изготовлены полномасштабные цилиндрические образцы для испытания на одноосное растяжение.

Для осуществления изобретения образцы изготавливались из порошка алюминиевого сплава AlSi10Mg производства ОК РУСАЛ фракцией до 50 мкм. Изготовление деталей технологией селективного лазерного сплавления осуществлялось при мощности лазерного излучения 350 Вт, скорости сканирования 930 мм/с, толщине слоя 50 мкм и шаге сканирования 0,19 мм. Процесс изготовления деталей технологией селективного лазерного сплавления происходил внутри герметичной камеры в среде защитного газа. Также осуществляется предварительный нагрев платформы построения до температуры 180°С.

Часть образцов была расположена горизонтально под углом α=90° относительно дозатора (фигура 3). Часть образцов при изготовлении была расположена вертикально под углом β=90° к платформе построения.

Результаты испытаний механических свойств образцов, изготовленных предлагаемым способом, представлены в таблице 1.

Таблица 1 - Механические свойства образцов, изготовленных технологией селективного лазерного сплавления из порошка алюминиевого сплава AlSi10Mg

Контроль плотности изготовленных образцов осуществлялся путем проведения томографического контроля. По результатам исследований, объем пустот составил менее 0,000451% от объема образцов.

Таким образом, предлагаемый способ позволяет изготавливать функциональные детали с достаточным уровнем механических свойств, высокой плотностью и низким КИМ.

В результате этого, применение предлагаемого способа изготовления для элементов гидросистем, теплообменников и корпусных деталей авиационной радиотехнической аппаратуры позволит повысить КИМ, снизить затраты на изготовление технологической оснастки, сократить время изготовления подобных деталей в несколько раз.

Похожие патенты RU2728450C1

название год авторы номер документа
Способ получения деталей из алюминиевого сплава системы Al-Mg-Sc технологией селективного лазерного сплавления 2022
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Агаповичев Антон Васильевич
  • Алексеев Вячеслав Петрович
  • Кяримов Рустам Равильевич
  • Балякин Андрей Владимирович
  • Гончаров Евгений Станиславович
  • Олейник Максим Андреевич
  • Кокарева Виктория Валерьевна
RU2782192C1
Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку 2018
  • Смелов Виталий Геннадиевич
  • Сотов Антон Владимирович
  • Агаповичев Антон Васильевич
  • Кяримов Рустам Равильевич
RU2674685C1
ПОРОШКОВЫЙ АЛЮМИНИЕВЫЙ МАТЕРИАЛ ДЛЯ ПОЛУЧЕНИЯ ИЗДЕЛИЙ МЕТОДАМИ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2023
  • Манн Виктор Христьянович
  • Вахромов Роман Олегович
  • Рябов Дмитрий Константинович
  • Сеферян Александр Гарегинович
  • Митин Виталий Иванович
  • Рахуба Евгений Михайлович
  • Торопов Александр Владимирович
  • Сухенко Александр Александрович
RU2805736C1
Способ получения заготовок деталей и сборочных единиц индустриальных двигателей методом селективного лазерного сплавления металлического порошка 2022
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Агаповичев Антон Васильевич
  • Петрухин Анатолий Геннадьевич
  • Чупин Павел Владимирович
  • Щедрин Евгений Юрьевич
RU2811330C1
Сплав на основе алюминия 2017
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Оглодков Михаил Сергеевич
  • Иванова Анна Олеговна
  • Дынин Николай Витальевич
RU2661525C1
Способ получения деталей из конструкционной стали 38Х2МЮА технологией селективного лазерного сплавления 2023
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Вдовин Роман Александрович
  • Алексеев Вячеслав Петрович
  • Кяримов Рустам Равильевич
  • Балякин Андрей Владимирович
  • Кокарева Виктория Валерьевна
RU2812102C1
АЛЮМИНИЕВЫЙ СПЛАВ ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2018
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Рябов Дмитрий Константинович
  • Королев Владимир Александрович
  • Цисарь Дмитрий Владимирович
RU2717441C1
Способ получения металлокерамического композиционного материала методом селективного лазерного сплавления 2022
  • Неруш Святослав Васильевич
  • Рогалев Алексей Михайлович
  • Сухов Дмитрий Игоревич
  • Богачев Игорь Александрович
  • Мазалов Павел Борисович
  • Курбаткина Елена Игоревна
  • Шошев Федор Львович
RU2801975C1
СПОСОБ ПОЛУЧЕНИЯ ПЛАЗМОННОЙ ПЛЕНОЧНОЙ СТРУКТУРЫ ИЗ АДДИТИВНЫХ ПОРОШКОВ НА ОСНОВЕ АЛЮМИНИЯ 2017
  • Кашаев Федор Владимирович
  • Шулейко Дмитрий Валерьевич
  • Заботнов Станислав Васильевич
  • Колчин Александр Валерьевич
  • Гаршев Алексей Викторович
  • Путляев Валерий Иванович
  • Грунин Андрей Анатольевич
  • Петров Александр Кириллович
  • Четвертухин Артем Вячеславович
  • Федянин Андрей Анатольевич
  • Михайлов Иван Юрьевич
RU2689479C1
ПОРОШКОВЫЙ АЛЮМИНИЕВЫЙ МАТЕРИАЛ 2019
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Рябов Дмитрий Константинович
  • Королев Владимир Александрович
  • Даубарайте Дарья Константиновна
  • Солонин Алексей Николаевич
  • Чурюмов Александр Юрьевич
RU2741022C1

Иллюстрации к изобретению RU 2 728 450 C1

Реферат патента 2020 года Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления

Изобретение относится к способу изготовления деталей из алюминиевых сплавов и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем. Изготовление деталей технологией селективного лазерного сплавления выполняют при следующих технологических параметрах: мощность лазерного излучения от 330 до 350 Вт, скорость сканирования от 900 до 930 мм/с, толщина слоя 50 мкм и шаг сканирования 0,19 мм. Технический результат - получение деталей с низкой пористостью, с высокими механическими свойствами и низким уровнем остаточных напряжений. 3 ил., 1 табл.

Формула изобретения RU 2 728 450 C1

Способ получения деталей из алюминиевых сплавов, включающий селективное лазерное сплавление с использованием металлического порошка, отличающийся тем, что селективное лазерное сплавление выполняют слоями с толщиной слоя 50 мкм , мощностью лазерного излучения от 330 до 350 Вт, скоростью сканирования от 900 до 930 мм/с и шагом сканирования 0,19 мм.

Документы, цитированные в отчете о поиске Патент 2020 года RU2728450C1

WO 2013179017 A1, 05.12.2013
Способ аддитивной обработки деталей из сплавов системы Al-Si 2016
  • Тарасова Татьяна Васильевна
  • Гвоздева Галина Олеговна
RU2620841C1
RU 2015131829 A, 10.03.2017
АЛЮМИНИЕВЫЙ СПЛАВ 2012
  • Безенкон,Сирилл
  • Басси,Коррадо
  • Шеллингер,Франк
RU2596509C2
СПОСОБ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ 2010
  • Туричин Глеб Андреевич
  • Цибульский Игорь Александрович
RU2440221C1
US20180272471A1, 27.09.2018
US 20160332253 A1, 17.11.2016.

RU 2 728 450 C1

Авторы

Смелов Виталий Геннадиевич

Агаповичев Антон Васильевич

Сотов Антон Владимирович

Хаймович Александр Исаакович

Кирилин Александр Сергеевич

Даты

2020-07-29Публикация

2019-09-30Подача