СПОСОБ ПОДВОДНОЙ ЛАЗЕРНОЙ РЕЗКИ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ Российский патент 2021 года по МПК B23K26/122 B23K26/38 

Описание патента на изобретение RU2751501C1

Изобретение относится к резке металлических конструкций под водой, в частности, к подводной лазерной резке, и может быть использовано для подводных строительных работ, ремонту подводных трубопроводов, демонтажа подводных металлических сооружений и конструкций, разделке на части затонувших объектов при их подъеме, а также в атомной отрасли для разделки корпусов ядерных реакторов.

Известен способ подводной лазерной резки металлических конструкций, заключающийся в спуске лазерной головки к разрезаемой конструкции, определении оптимального расстояния между головкой и разрезаемой конструкцией, устанавливают скорости потока вспомогательного газа и мощность лазера и, после чего начинают процесс резки путем подачи в зону реза лазерного луча и вспомогательного газа, причем последний (воздух или кислород или аргон), служащий для поддержания газового пузыря вокруг сопла горелки и выноса расплава из зоны резки, подается непрерывным потоком [1].

Недостатками способа являются то, что при увеличении толщины разрезаемого металла и глубины выполнения работ уменьшается скорость резки. При этом увеличение давления и расхода вспомогательного газа практически не влияет на производительность резки.

Задачей изобретения является повышение производительности процесса разделки, увеличение толщины разрезаемого металла и обеспечение безопасности при проведении работ по разделке под водой металлоконструкций.

Задача решается тем, что в известном способе подводной лазерной резки металлических конструкций, заключающемся в нагреве участка разрезаемой поверхности метала, находящейся в водной среде, до температуры плавления или выше посредством лазерного излучения, передаваемого по волоконно-оптическому каналу и оптической системы, фокусирующей лазерное излучение с торца волоконно-оптического кабеля на разрезаемую поверхность, формировании газового пузыря над местом реза, отличающийся тем, что для резки формируют два газовых пузыря за счет двух газовых потоков - основного и дополнительного, при этом при этом формирование основного газового пузыря осуществляют коаксиально с лазерным излучением, дополнительно формируют второй вспомогательный газовый пузырь над местом реза путем импульсной подачи дополнительного газового потока при помощи дополнительного сопла, установленного под углом к поверхности вдоль оси реза перед или за пятном лазерного излучения, при этом газы в основной и дополнительный газовые потоки подаются в заданной очередности, при сохранении их постоянного массового или объемного расхода.

Новыми отличительными признаками являются формирование двух газовых пузырей за счет двух газовых потоков - основного и дополнительного, при этом формирование основного газового пузыря осуществляют коаксиально с лазерным излучением, а вспомогательный газовый пузырь формируют над местом реза путем импульсной подачи дополнительного газового потока при помощи дополнительного сопла, установленного под углом к поверхности вдоль оси реза перед или за пятном лазерного излучения по ходу реза, при этом газы в основной и дополнительный газовые потоки подаются в определенной очередности, при сохранении их постоянного массового или объемного расхода.

Указанные отличительные признаки обеспечивают решение поставленной в изобретении задачи.

На фиг. 1 приведены схемы реализации заявляемого способа подводной лазерной резки: а - дополнительный газовый поток формируют перед пятном сфокусированного лазерного излучения; б - дополнительный газовый поток формируют за пятном сфокусированного лазерного излучения.

На фиг. 2 представлены возможные варианты подачи и формы сечения потока основного рабочего газа относительно пятна лазерного излучения, где 1 - пятно лазерного излучения, 2 - поперечное сечение потока основного рабочего газа.

На фиг. 3 схематично представлено устройство для реализации заявляемого способа.

Способ подводной лазерной резки металлических конструкций реализуется в следующей последовательности.

Перед погружением в воду (см. фиг. 3) лазерного резака 10, в основное 4 и дополнительное сопла 5 подают рабочий газ под давлением, незначительно превышающим давление на глубине производства работ для обеспечения защиты оптических элементов лазерного резака 10 от воды. По достижении требуемой глубины, осуществляют позиционирование резака относительно обрабатываемой поверхности включают подачу основного рабочего газа для формирования основного газового пузыря, причем давление потока 2 основного рабочего газа должно превышать давление на глубине производства работ. Далее, с определенной задержкой включают лазерное излучение 1. Фокусирующий объектив 9 формирует на поверхности разрезаемого металла 6 пятно лазерного излучения 7 с пространственно-энергетическими характеристиками, обеспечивающими расплав или испарение обрабатываемого материала в зоне резки, для получения сквозного прожига 8. В зависимости от толщины и марки металла, время сквозного прожига может изменяться в широких пределах (чем толще материал, тем время прожига больше).

Для повышения эффективности удаления расплава и окалины из зоны реза формируют дополнительный газовый поток перед или за пятном сфокусированного лазерного излучения при помощи сопла, установленного под углом к поверхности разрезаемой конструкции. Причем подача дополнительного газового потока 3 через сопло осуществляются импульсно, что обеспечивает удаление расплава и окалины небольшими объемами со стабилизацией процесса резки.

После получения сквозного прожига начинают перемещение резака по траектории разреза материала с одновременной подачей дополнительного рабочего газа в дополнительное сопло 5 при давлении, превышающим давление основного рабочего газа для формирования дополнительного газового пузыря и обеспечения более эффективного удаления расплава, окалины и шлама из реза. В процессе резки корпус лазерного резака 10 перемещают над поверхностью разрезаемого материала по заданным траекториям со скоростью, обеспечивающей получение сквозного реза.

Технико-экономическое преимущество заявляемого способа подводной лазерной резки металлических конструкций по сравнению со способом подводной лазерной резки металлических конструкций, описанным в патенте Японии №6375898 и принятым за прототип, заключается в повышении производительности процесса разделки при заданной толщине металла, увеличении предельной толщины разрезаемого материала с одновременным повышением безопасности, экономичности и экологичности процесса обработки за счет уменьшения мощности лазерной резки в потоке кислорода при проведении работ по разделке под водой металлоконструкций.

Сравнительный эксперимент по резке образцов низкоуглеродистой стали толщиной до 10 мм при условии их погружения в водную среду на глубину до 5 метров двумя способами: - способом, изложенным в Патент Японии 6375898 «Подводный метод лазерной резки и устройство» и заявленным способом, показал увеличение скорости реза в 1,5 раза при увеличении максимальной толщины разрезаемого металла на 20%.

Таким образом, за счет формирования дополнительного газового пузыря над местом реза и импульсной подачи дополнительного газового потока, при помощи дополнительного сопла, которое устанавливают под углом к поверхности реза, удается существенно увеличить скорость реза и толщину разрезаемого металла.

Литература:

1. Патент Японии 6375898 Подводный метод лазерной резки и устройство МПК B23K 26/122, 2018

Похожие патенты RU2751501C1

название год авторы номер документа
Энергоэффективное устройство лазерной резки материалов 2016
  • Воробьев Алексей Александрович
  • Яневский Владимир Демьянович
RU2698896C2
МНОГОФУНКЦИОНАЛЬНЫЙ ЛАЗЕРНЫЙ МОДУЛЬ МЛМ (КОМПЛЕКС) 2021
  • Метляев Дмитрий Дмитриевич
  • Романов Роман Евгеньевич
  • Гвоздев Сергей Викторович
  • Белых Александр Дмитриевич
  • Балабанов Сергей Сергеевич
  • Дубровский Владимир Юрьевич
  • Емельянов Константин Андреевич
  • Красюков Александр Григорьевич
  • Масленников Роман Вячеславович
  • Малышкин Илья Александрович
  • Мочалов Анатолий Владимирович
  • Пазюк Степан Владимирович
  • Смирнов Геннадий Васильевич
RU2769194C1
РОБОТИЗИРОВАННЫЙ ЛАЗЕРНЫЙ КОМПЛЕКС И СПОСОБ ДЕМОНТАЖА МЕТАЛЛОКОНСТРУКЦИЙ АЭС 2020
  • Беданоков Азамат Юрьевич
  • Красюков Александр Григорьевич
  • Марков Дмитрий Владимирович
RU2756175C1
Устройство лазерной резки материалов с рекуперацией отводимой тепловой энергии 2020
  • Воробьев Алексей Александрович
  • Чичаева Ольга Владимировна
  • Филимонова Валентина Анатольевна
RU2735153C1
СПОСОБ РАЗДЕЛИТЕЛЬНОЙ РЕЗКИ МЕТАЛЛОКОНСТРУКЦИЙ И ОБОРУДОВАНИЯ 2019
  • Федяков Владимир Юрьевич
  • Першин Олег Станиславович
  • Сорокин Юрий Владимирович
RU2708442C1
СПОСОБ ЛАЗЕРНОЙ РЕЗКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Исаков Владимир Владимирович
  • Швецов Анатолий Анатольевич
RU2288084C1
СПОСОБ РЕЗКИ МАТЕРИАЛОВ 2005
  • Дробязко Станислав Витальевич
  • Сенаторов Юрий Михайлович
RU2293006C1
СПОСОБ ЛАЗЕРНОЙ РЕЗКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1990
  • Мохна А.П.
  • Пархомчук С.К.
  • Мохна А.А.
  • Левандовский А.Г.
RU1787321C
СПОСОБ ГАЗОЛАЗЕРНОЙ РЕЗКИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 1995
  • Терегулов Наугат Гиниятуллич[Ru]
  • Соколов Борис Константинович[Ru]
  • Варбанов Георгий[Bg]
  • Ерофеев Евгений Юрьевич[Ru]
  • Шаранков Любомир[Bg]
  • Соломатин Василий Васильевич[Ru]
  • Скуднов Сергей Иванович[Ru]
RU2089365C1
СПОСОБ РЕЗКИ ТОЛСТЫХ МЕТАЛЛИЧЕСКИХ ЛИСТОВ 2007
  • Оришич Анатолий Митрофанович
  • Фомин Василий Михайлович
  • Шулятьев Виктор Борисович
  • Ермолаев Григорий Викторович
  • Зайцев Александр Васильевич
  • Ковалев Олег Борисович
  • Маликов Александр Геннадьевич
  • Юдин Петр Владимирович
RU2350445C1

Иллюстрации к изобретению RU 2 751 501 C1

Реферат патента 2021 года СПОСОБ ПОДВОДНОЙ ЛАЗЕРНОЙ РЕЗКИ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

Изобретение относится к способу подводной лазерной резки металлических конструкций и может быть использовано для подводных строительных работ, ремонта подводных трубопроводов, демонтажа металлических сооружений и конструкций, разделки на части затонувших объектов при их подъеме, а также в атомной отрасли для разделки корпусов ядерных реакторов. Способ включает нагрев участка разрезаемой поверхности металла, находящейся в водной среде, до температуры плавления или выше посредством лазерного излучения передаваемого по волоконно-оптическому каналу и оптической системе, фокусирующей лазерное излучение с торца волоконно-оптического канала на разрезаемую поверхность. Формирование газового пузыря осуществляют над местом реза. Для резки формируют два газовых пузыря за счет двух газовых потоков - основного и дополнительного. Формирование основного газового пузыря осуществляют коаксиально с лазерным излучением. Газы подают перед или за пятном сфокусированного лазерного излучения. Вспомогательный газовый пузырь формируют при помощи дополнительного сопла, установленного под углом к поверхности реза. Газы в основной и дополнительный газовые потоки подают в определенной последовательности при сохранении их постоянного массового или объемного расхода. Способ обеспечивает повышение производительности процесса разделки металлических конструкций под водой, увеличение толщины разрезаемого металла и повышение уровня безопасности при проведении работ по разделке под водой металлоконструкций. 3 ил.

Формула изобретения RU 2 751 501 C1

Способ подводной лазерной резки металлических конструкций, включающий нагрев участка разрезаемой поверхности металла, находящейся в водной среде, до температуры равной или более температуры плавления металла посредством лазерного излучения, которое передают по волоконно-оптическому каналу через оптическую систему, фокусирующую лазерное излучение в пятно с заданными пространственно-энергетическими характеристиками на разрезаемую поверхность, и формирование газового пузыря путем подачи основного газового потока на место реза, отличающийся тем, что дополнительно формируют второй вспомогательный газовый пузырь над местом реза путем импульсной подачи дополнительного газового потока, при этом формирование основного газового пузыря осуществляют потоком газа коаксиально с лазерным излучением, а вспомогательный газовый пузырь формируют перед или за пятном сфокусированного лазерного излучения при помощи дополнительного сопла, которое устанавливают под углом к поверхности реза вдоль оси реза, при этом основной и дополнительный газовые потоки подают в заданной последовательности при сохранении массового или объемного расхода газа.

Документы, цитированные в отчете о поиске Патент 2021 года RU2751501C1

JP 6375898 B2, 22.08.2018
УСТРОЙСТВО ДЛЯ ЛАЗЕРНОЙ ОБРАБОТКИ 1997
  • Кащеев К.П.
  • Воробьев В.В.
  • Фомичева И.А.
RU2127179C1
Способ подводной дуговой сварки 1973
  • Хидео Сагара
  • Ясухиро Нисио
  • Хироказу Вада
  • Есинори Хиромото
SU680622A3
СПОСОБ ЛАЗЕРНОЙ РЕЗКИ КВАРЦЕВОГО СТЕКЛА 1991
  • Ганюченко В.М.
  • Вологдина С.Г.
  • Калинин Н.А.
RU2020133C1
УСТРОЙСТВО ДЛЯ ЛАЗЕРНОЙ РЕЗКИ 1997
  • Забелин А.М.
RU2139783C1
JP 63242483 A, 07.10.1988
JP 9285892 A, 04.11.1997.

RU 2 751 501 C1

Авторы

Агеев Антон Сергеевич

Журба Владимир Михайлович

Волков Михаил Владимирович

Орлов Николай Леонидович

Пуйша Александр Эдуардович

Кудрин Евгений Владимирович

Леонтьева Ирина Григорьевна

Даты

2021-07-14Публикация

2020-08-11Подача