Способ измерения магнитного курса судна в высоких широтах Российский патент 2021 года по МПК G01C17/30 

Описание патента на изобретение RU2763685C1

Изобретение относится к области навигационного приборостроения и может быть использовано в высокоширотных магнитных компасах, оборудованных устройствами дистанционной передачи информации о курсе.

Известны дистанционные магнитные компасы, содержащие корпус, заполненный демпфирующей жидкостью, картушку с магнитным чувствительным элементом (далее - МЧЭ), установленную на опоре, индукционный преобразователь, размещенный в магнитном поле МЧЭ, девиационный прибор, содержащий компенсатор полукруговой девиации компаса, и электромеханическую дистанционную передачу, например, магнитные компасы "Сектор" ["Магнитные компасы", В.П. Кожухов, В.В. Воронов, В.В. Григорьев // М.: Транспорт, 1981, стр. 173-180] и КМ145-С ["Современные судовые магнитные компасы" Л.А.Кардашинский-Брауде // С-Пб.:, Изд. ГНЦ РФ ЦНИИ "Электроприбор", 1999, стр. 60-62]. К недостаткам способа измерения магнитного курса, реализуемого в этих компасах относится значительная систематическая погрешность δр их показаний на качке при работе в высоких широтах, вызванная действием в плоскости диска картушки с МЧЭ проекции вертикальной составляющей земного магнетизма, выражаемой формулой ["Магнитно-компасное дело" Н.Ю.Рыбалтовский // Государственное издательство водного транспорта, Л., 1954, стр. 441]:

,

где h - высота картушки компаса над осью качаний судна;

l0 - длина маятника с периодом колебания, соответствующим периоду колебаний судна;

i - угол поперечного крена судна;

θ - магнитное наклонение;

k - магнитный курс судна.

За прототип способа и устройства, описанного в изобретении, принято техническое решение, приведенное в патенте №2688900 - Способ измерения магнитного курса судна в высоких широтах и устройство для его реализации. Авторы Зиненко В.М, Грязин Д.Г, Молочников А.А, Сергачёв И.В, Матвеев Ю.В, Короленко И.В.

Указанный способ и устройство осуществляют позиционное управление за счет использования в схеме датчика угловой скорости типа волоконно-оптического гироскопа и формирования сигнала, представляющего собой разность выходного показания магнитного компаса и проинтегрированного сигнала датчика угловой скорости. В связи с тем, что эксплуатация магнитного компаса происходит на длительном интервале времени, при интегрировании сигнала датчика угловой скорости будет накапливаться ошибка, что со временем приведет к увеличению погрешности в выходном сигнале предлагаемого устройства. Использование в этом способе и устройстве датчика угловой скорости типа микромеханического гироскопа (далее ММГ), в погрешности которого преобладают флуктуационные составляющие типа белого шума и случайного блуждания угла, не представляется возможным, поскольку быстро накапливающаяся ошибка ММГ при интегрировании его выходного сигнала приводит к резкому повышению погрешности компаса.

Решаемая техническая проблема - разработка способа компенсации систематической погрешности δр компаса на качке (далее - погрешности δр), вызванной действием в плоскости диска картушки с МЧЭ проекции вертикальной составляющей земного магнетизма и совершенствование его конструкции путем применения в его схеме ММГ с целью уменьшения стоимости прибора и уменьшения погрешности компаса на длительных интервалах времени.

Технический результат - уменьшения погрешности компаса на качке, в том числе в высоких широтах, на длительных интервалах времени, а также повышение конкурентоспособности магнитного компаса путем уменьшения его цены за счет применения в его конструкции дешевого ММГ.

Реализация предлагаемого способа достигается путем установки на котелок магнитного компаса, закрепленного в кардановом подвесе, в качестве датчика угловой скорости с вертикальной осью чувствительности - ММГ, который вырабатывает мгновенные значения угловых скоростей изменения курса и рыскания. Выходные данные ММГ используются для компенсации значений угловых скоростей изменения курса и рыскания в сигнале, формируемом путем дифференцирования показаний датчика магнитного курса компаса (далее ДМК). В результате вычисления разности между выходными сигналами дифференцирующего звена и ММГ формируется сигнал, который далее пропускается через фильтр низких частот для формирования на выходе фильтра сигнала, пропорционального погрешности δр.. Для достижения технического результата полученное значение погрешности δр вычитается из результатов измерений ДМК и передается на выносной индикатор.

На фиг. 1 показана блок-схема выработки измерительных сигналов и их обработки в вычислительном устройстве, работающем на основе предлагаемого способа.

Предлагаемый способ, использующий управление по угловой скорости рыскания, заключается в следующем:

1. Выработка с помощью ДМК сигнала , состоящего из мгновенных значений магнитного курса Км, угла рыскания γр и погрешности .

2. Выработка с помощью ММГ с вертикальной осью чувствительности, установленного в горизонтной системе координат на котелке компаса, сигнала , состоящего из угловых скоростей изменения курса , рыскания и погрешности .

3. Дифференцирование показаний ДМК и формирование на выходе дифференцирующего звена с постоянной времени T1 сигнала , состоящего из угловых скоростей изменения курса , рыскания и погрешности .. При выполнении вычислений значение T1 выбирается исходя из задачи наилучшего воспроизведения угловых скоростей изменения курса и рыскания.

4. Вычисление разности между выходными сигналами дифференцирующего звена и ММГ с целью формирования сигнала, состоящего из погрешности и погрешности .

5. Фильтрация сигнала, состоящего из погрешности и погрешности с помощью фильтра низких частот с постоянной времени T2, значение которой выбирается исходя из задачи наилучшего воспроизведения погрешности и сглаживания погрешности .

Коэффициенты K1 и K2 выбираются исходя из масштабных коэффициентов ДМК и ММГ, р - оператор дифференцирования, 1 - дифференцирующее звено, 2 - фильтр низких частот.

6. Исключение из измеряемых мгновенных значений магнитного курса погрешности δр производится путем вычисления разности между выходным сигналом ДМК и сигналом с выхода фильтра низких частот, пропорциональным погрешности δр. Передача откорректированного значения магнитного курса выполняется на выносной индикатор.

Полученные на основе компьютерного моделирования результаты работы компаса подтверждают возможность корректировки результатов измерений мгновенного значения магнитного курса за счет компенсации в нем погрешности от вертикальной составляющей земного магнетизма, возникающей на качке, не менее чем в десять раз на интервале времени, составляющем 200 часов, т. е в отличие от прототипа, в предлагаемом способе обеспечивается долговременное сохранение точности, что позволяет использовать магнитный компас при плавании судов до 84° северной широты.

Таким образом, заявленный технический результат считается достигнутым. В настоящее время изготавливается опытный образец компаса.

Похожие патенты RU2763685C1

название год авторы номер документа
Способ измерения магнитного курса судна с использованием системы коррекции 2023
  • Матвеев Юрий Вадимович
  • Падерина Татьяна Владимировна
  • Грязин Дмитрий Геннадиевич
RU2804444C1
Способ измерения магнитного курса судна в высоких широтах и устройство для его реализации 2018
  • Зиненко Владимир Михайлович
  • Грязин Дмитрий Геннадиевич
  • Молочников Александр Аронович
  • Сергачёв Игорь Вениаминович
  • Матвеев Юрий Вадимович
  • Короленко Илья Вадимович
RU2688900C1
Способ определения динамической погрешности магнитного компаса с системой коррекции от качки и устройство для его реализации 2022
  • Грязин Дмитрий Геннадиевич
RU2783479C1
Судовой электронный кренодифферентометр 2023
  • Грязин Дмитрий Геннадиевич
  • Падерина Татьяна Владимировна
RU2817308C1
Одноосный стенд для оценки амплитудно-частотной характеристики системы коррекции магнитного компаса 2021
  • Гороховский Константин Сергеевич
  • Грязин Дмитрий Геннадьевич
RU2757536C1
ИНТЕГРИРОВАННАЯ ИНЕРЦИАЛЬНО-СПУТНИКОВАЯ СИСТЕМА ОРИЕНТАЦИИ И НАВИГАЦИИ ДЛЯ МОРСКИХ ОБЪЕКТОВ 2013
  • Блажнов Борис Александрович
  • Волынский Денис Валерьевич
  • Емельянцев Геннадий Иванович
  • Петров Павел Юрьевич
  • Радченко Дмитрий Александрович
  • Семенов Илья Вячеславович
  • Степанов Алексей Петрович
RU2523670C1
ИНТЕГРИРОВАННЫЙ КОМПЛЕКС ДЛЯ НАВИГАЦИИ И УПРАВЛЕНИЯ МОРСКИХ СУДОВ 1997
  • Анучин Олег Николаевич
  • Гусинский Валерий Залманович
  • Емельянцев Геннадий Иванович
RU2117253C1
НАВИГАЦИОННЫЙ КОМПЛЕКС 2012
  • Чернявец Антон Владимирович
  • Жильцов Николай Николаевич
  • Зеньков Андрей Федорович
  • Аносов Виктор Сергеевич
  • Федоров Александр Анатольевич
  • Чернявец Владимир Васильевич
RU2483280C1
Стабилизатор курса речных судов 1972
  • Муратиков Лев Николаевич
  • Любимов Александр Иванович
  • Ченцов Борис Васильевич
  • Ходырев Владимир Яковлевич
  • Мирошниченко Игорь Федорович
  • Шлеер Генрих Эразмович
  • Ходырев Юрий Викторович
SU449853A1
МАГНИТНЫЙ КУРСОУКАЗАТЕЛЬ ДЛЯ СКОРОСТНЫХ СУДОВ 2013
  • Уланов Владимир Федорович
  • Приходько Евгений Васильевич
  • Ванаев Анатолий Петрович
RU2531059C1

Иллюстрации к изобретению RU 2 763 685 C1

Реферат патента 2021 года Способ измерения магнитного курса судна в высоких широтах

Изобретение относится к области навигационного приборостроения. Сущность изобретения заключается в том, что осуществляют установку на котелок магнитного компаса, закрепленного в кардановом подвесе, в качестве датчика угловой скорости с вертикальной осью чувствительности микромеханический гироскоп (ММГ), который вырабатывает мгновенные значения угловых скоростей изменения курса и рыскания. Выходные данные ММГ используются для компенсации значений угловых скоростей изменения курса и рыскания в сигнале, формируемом путем дифференцирования показаний датчика магнитного курса компаса (ДМК). В результате вычисления разности между выходными сигналами дифференцирующего звена и ММГ формируется сигнал, который далее пропускается через фильтр низких частот для формирования на выходе фильтра сигнала, пропорционального погрешности. Технический результат – уменьшение погрешности компаса на качке. 1 ил.

Формула изобретения RU 2 763 685 C1

Способ измерения мгновенного значения магнитного курса судна на качке при воздействии на магниточувствительный элемент (МЧЭ) картушки компаса вертикальной составляющей магнитного поля Земли, заключающийся в выработке датчиком магнитного курса (ДМК) сигнала, состоящего из магнитного курса Км, угла рыскания γр и погрешности δр., и датчиком угловой скорости с вертикальной осью чувствительности, установленным на котелке компаса, сигнала, состоящего из угловых скоростей изменения курса , рыскания и погрешности , отличающийся тем, что в качестве датчика угловой скорости используется микромеханический гироскоп (ММГ) и для его применения реализуется управление по угловой скорости рыскания, заключающееся в том, что сигнал ДМК пропускается через дифференцирующее звено, на выходе которого формируется сигнал , состоящий из угловых скоростей изменения курса , рыскания и погрешности , затем вычисляется разность между выходными сигналами дифференцирующего звена и ММГ для формирования сигнала, который далее пропускается через фильтр низких частот для формирования на выходе фильтра сигнала, пропорционального погрешности δр, затем производится вычисление разности между выходным сигналом ДМК и погрешностью δр, откорректированное значение магнитного курса передается на выносной индикатор.

Документы, цитированные в отчете о поиске Патент 2021 года RU2763685C1

Способ измерения магнитного курса судна в высоких широтах и устройство для его реализации 2018
  • Зиненко Владимир Михайлович
  • Грязин Дмитрий Геннадиевич
  • Молочников Александр Аронович
  • Сергачёв Игорь Вениаминович
  • Матвеев Юрий Вадимович
  • Короленко Илья Вадимович
RU2688900C1
Способ определения динамической погрешности магнитного компаса, вызванной качкой, и устройство для его реализации 2019
  • Грязин Дмитрий Геннадиевич
  • Гороховский Константин Сергеевич
RU2718691C1
Способ автоматической выставки по курсу инерциальной навигационной системы и устройство для его осуществления 1991
  • Меркулов Виктор Петрович
  • Болотов Александр Владимирович
  • Гайшун Юрий Павлович
SU1835489A1
DE 3422729 A1, 19.12.1985.

RU 2 763 685 C1

Авторы

Грязин Дмитрий Геннадьевич

Падерина Татьяна Владимировна

Даты

2021-12-30Публикация

2021-04-19Подача