Способ очистки отходов спиртового производства Российский патент 2022 года по МПК C07C29/80 C07C29/88 C07C31/08 

Описание патента на изобретение RU2775964C1

Изобретение относится к спиртовой и химической промышленности, в частности к способу очистки отходов спиртового производства от карбонильных соединений.

При производстве этилового спирта образуется большое количество спиртосодержащих отходов, которые загрязнены трудноотделимыми примесями, представленными в первую очередь карбонильными соединениями (альдегидами и кетонами), сложными эфирами, метанолом и сивушными маслами (спиртами с количеством атомов углерода в молекуле большим или равным трем). Перечисленные компоненты образуют азеотропные смеси с этанолом, водой и между собой и не могут быть отделены от этанола с помощью ректификации. В это же время данные примеси и, в особенности, карбонильные соединения накладывают значительные ограничения на использование отходов спиртового производства в промышленном органическом синтезе в качестве источника этанола. Поэтому проблематика очистки отходов спиртового производства от карбонильных соединений актуальна как для спиртовых заводов, так и для химических предприятий.

Известны способы очистки путем прямой перегонки головной фракции этилового спирта и концентрата головной фракции в присутствии щелочных реагентов, в качестве которых используют гидраты окисей, карбонаты и бикарбонаты натрия и калия, окиси кальция, аммиачную воду в количестве 0,01-3,0% масс. (Патенты RU 2183616 С2, 2002 г.; RU 2272018 С1, 2006 г.)

Известен способ выделения алифатических спиртов из головной (эфироальдегидной) фракции производства этилового спирта ректификацией, в присутствии 0,1-10% масс. щелочных агентов: гидратов окиси натрия, соды, окиси кальция. (Патент RU 2109722 С1, 1998 г.)

Известен способ переработки концентрата головной фракции спиртового производства методом ректификации в присутствии таких соединений, как мочевина либо гидроксид, карбонат, борат, ацетат или оксид калия, натрия, кальция, алюминия или аммония, а также с помощью адсорбции на активированном угле, силикагеле, анионитах, цеолитах либо оксидах, гидроксидах, сульфатах, карбонатах, боратах, ацетатах, хлоридах или фосфатах калия, натрия, кальция, алюминия или аммония. (Заявка на патент RU 2001123598 А, 2003 г.)

Известен способ переработки эфироальдегидной фракции спиртового производства путем обработки определенным количеством щелочного агента с последующей ректификацией в присутствии щелочных агентов: гидраты окисей, карбонаты и бикарбонаты натрия, калия, окись кальция, аммиак в концентрации 0,01 - 0,099 мас. %.

Недостатком указанных способов очистки отходов спиртового производства является низкая эффективность извлечения карбонильных соединений, которые в условиях ректификации при сравнительно небольшом времени контактирования не успевают в достаточной мере вступить в реакции альдольной конденсации. Поэтому очищенный спирт зачастую имеет желтоватый цвет и не пригоден для использования в пищевой промышленности и органическом синтезе.

Наиболее близким способом, выбранным в качестве прототипа, является способ очистки фракции головной этилового спирта, в котором обработку щелочными реагентами: гидроксидами калия и натрия ведут до значения рН реакционной смеси не менее 11,0, выдерживают смесь до устойчивого коричневого цвета и перед дистилляцией нейтрализуют смесь сильными минеральными кислотами или кислыми солями до значения рН не более 5,1. В данном изобретении проблему низкой эффективности очистки и высокой цветности спирта предлагают решить путем увеличения времени реакции конденсации и снижения рН реакционной смеси перед проведением перегонки. (Патент RU 2686071 С1, 2019 г.)

Недостатками указанного изобретения является использование дополнительного реагента; многостадийность, связанная с наличием стадии понижения рН реакционной смеси; более сложное аппаратурное оформление, связанное с необходимостью точного контроля рН; низкий выход целевой очищенной спиртосодержащей фракции.

Целью настоящего изобретения является разработка эффективного способа очистки отходов спиртового производства от карбонильных соединений, позволяющего получать очищенный спирт с выходом не менее 87% и остаточным содержанием ацетальдегида не более 20% от исходного.

Поставленная цель достигается обработкой отходов спиртового производства щелочным агентом с выделением очищенного продукта в процессе перегонки, которая отличается тем, что содержание воды в отходах спиртового производства находится на уровне не менее 6% об., а щелочной агент подается в массовом отношении от 0,2 о 5%.

В ходе экспериментальных исследований было обнаружено, что использование отходов спиртового производства с содержанием воды не менее 6% об. позволяет провести процесс альдольно-кротоновой конденсации и полимеризации ацетальдегида с получением более высокомолекулярных продуктов. Данный эффект достигается за счет увеличения растворимости щелочных агентов, выступающих в качестве катализатора, в спирте при высокой его обводненности. Более высокомолекулярные продукты обладают меньшей относительной летучестью, что облегчает их последующее отделение от очищенного продукта в процессе перегонки.

Также при содержании воды не менее 6% об. все компоненты отходов спиртового производства: этанол, сивушные масла и эфиры перегоняют в виде азеотропных смесей с водой. Данные смеси имеют более низкие температуры кипения по сравнению с чистыми компонентами и поэтому легче отделяются от кубового остатка. Кроме того, при высоком содержании воды создается дополнительная буферная зона при перегонке. Избыточная от азеотропного соотношения вода выкипает после целевой фракции спирта, но до компонентов кубового остатка из-за чего становится возможным более точное разделение данных продуктов с получением более высокого выхода очищенного спирта при минимальных концентрациях карбонильных соединений в нем, а также полном отсутствии цвета.

Массовый расход щелочного агента напрямую связан с количеством воды в исходных отходах спиртового производства. При граничных содержаниях воды - 6-7% об. необходимо использовать больший расход щелочного агента - до 5% в виде водного раствора для предотвращения образования двухфазной системы, увеличения растворимости щелочи в спирте и увеличения степени полимеризации карбонильных соединений для эффективного отделения этанола от кубового остатка. При концентрации воды 10-15% расход может быть существенно снижен до 0,2-1,0%, а в качестве щелочного агента могут быть использованы твердые щелочи: гидроокиси калия или натрия.

При необходимости более глубокой очистки отходов спиртового производства до остаточного содержания ацетальдегида не более 10% от исходного предлагается проводить дополнительную доочистку реакционной смеси непосредственно перед проведением перегонки с помощью первичного амина. Первичный амин селективно реагирует с карбонильными соединениями с образованием основания Шиффа. Благодаря предварительной щелочной обработке удается значительно снизить общее содержание альдегидов в реакционной смеси, поэтому достигается меньший расход первичного амина и большая глубина очистки по сравнению с одновременной подачей данных реагентов. В качестве первичного амина используются вещества или смеси веществ общей формулой: H2N-R, где R - углеводородный радикал с количеством атомов углерода от 1 до 4; -С2Н4ОН; -C(O)NH2; -ОН; - NH2.

Предлагаемое техническое решение иллюстрируется конкретными примерами выполнения:

Пример 1 (сравнительный).

В трехгорлую круглодонную колбу на 500 мл, снабженную механической мешалкой, обратным холодильником и термометром, загружают 250 г отходов спиртового производства, представляющих собой эфироальдегидную фракцию с содержанием воды 4,5%, ацетальдегида 916 мг/дм3. Содержимое колбы нагревают до 40°С и подают 7,5 г раствора гидроокиси натрия с массовой концентрацией 30%. Затем реакционную смесь подвергают кипячению с обратным холодильником.

Через 4 часа кипячения в режиме возврата конденсата обогрев колбы выключают и охлаждают реакционную смесь до 30°С. Переливают содержимое колбы в делительную воронку и после отстоя через нижний слив отбирают водно-щелочной слой.

Спиртовой слой заливают в колбу для перегонки, снабженную термометром, прямым холодильником и вакуум создающей аппаратурой. Давление в колбе устанавливают на уровне 100-300 мм.рт.ст. Начинают нагрев реакционной смеси, первые 5 г отгоняют в виде предгона. Затем начинают отбирать целевой очищенный спирт до температуры 87°С в пересчете на атмосферное давление. Выход целевого продукта в пересчете на 100% спирт составляет 83,9%.

Полученный очищенный спирт представляет собой прозрачную жидкость с желтоватым оттенком. Содержание ацетальдегида 212 мг/дм3, содержание высококипящих примесных соединений (легких полимеров и высокомолекулярных альдегидов, образующихся в процессе очистки) 41 мг/дм3. Степень очистки от ацетальдегида составляет 76,9%.

Пример 2.

Процесс осуществляется в условиях примера 1, но в качестве отходов спиртового производства используется концентрат головных и сивушных примесей с содержанием воды 6,0%, ацетальдегида 740 мг/дм3, а расход раствора гидроокиси натрия увеличен до 12,5 г при снижении массовой концентрации до 20%.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 87,4%. Содержание ацетальдегида 145 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 80,4%.

Пример 3.

Процесс осуществляется в условиях примера 1, но в качестве отходов спиртового производства используется концентрат головных и сивушных примесей с содержанием воды 9,2%, ацетальдегида 834 мг/дм3, а в качестве щелочного агента используют гидроокись натрия в сухом виде в количестве 2,5 г. Время работы реактора в режиме возврата конденсата 2 часа.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 89,5%. Содержание ацетальдегида 151 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 81,9%.

Пример 4.

Процесс осуществляется в условиях примера 1, но в качестве отходов спиртового производства используется концентрат головных и сивушных примесей с содержанием воды 11,0%, ацетальдегида 652 мг/дм3, а в качестве щелочного агента используют гидроокись калия в виде раствора с массовой концентрацией 50% в количестве 1,25 г.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 91,2%. Содержание ацетальдегида 125 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 80,8%.

Пример 5.

Процесс осуществляется в условиях примера 4, но в качестве щелочного агента используют гидроокись натрия в сухом виде в количестве 0,5 г. Время работы реактора в режиме возврата конденсата 12 часов при температуре 40°С.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 89,7%. Содержание ацетальдегида 130 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 80,1%.

Пример 6.

Процесс осуществляется в условиях примера 1, но в качестве отходов спиртового производства используется концентрат головных и сивушных примесей с содержанием воды 14,8%, ацетальдегида 2882 мг/дм3, а в качестве щелочного агента используют гидроокись калия в сухом виде в количестве 2,5 г.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 91,0%. Содержание ацетальдегида 214 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 92,6%.

Пример 7.

Процесс осуществляется в условиях примера 4, но после проведения щелочной очистки в течении 4 часов в реакционную смесь добавляют гидроксиламин в количестве 0,75 г и дополнительно кипятят смесь в режиме возврата конденсата еще 1 час.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 91,4%. Содержание ацетальдегида 37 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 94,3%.

Пример 8.

Процесс осуществляется в условиях примера 6, но после проведения щелочной очистки в течении 4 часов в реакционную смесь добавляют гидразин сернокислый в количестве 1,25 г в пересчете на чистый гидразин и дополнительно кипятят смесь в режиме возврата конденсата еще 1 час.

Полученный очищенный спирт представляет собой прозрачную и бесцветную жидкость. Выход в пересчете на 100% спирт составляет 91,9%. Содержание ацетальдегида 88 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 96,5%.

Пример 9.

В реактор из нержавеющею стали объемом 10 м3, снабженный механической мешалкой, рубашкой для обогрева паром и охлаждения водой, датчиками температуры, давления, верхнего и нижнего уровней, линией вакуума, патрубками для загрузки, отгонки и слива спирта и кубового остатка, патрубком для подачи раствора гидроокиси натрия, теплообменником и системой для сбора предгона, основной фракции и кубового остатка, загружают 7500 кг концентрата головных и сивушных примесей с содержанием воды 11,0%, ацетальдегида 652 мг/дм3, включают мешалку и обогрев, нагревают массу до 40°С и через линию подачи гидроокиси натрия загружают 150 кг раствора с массовой концентрацией 50%, доводят реакционную смесь до кипения.

После 4 часов кипячения в режиме возврата конденсата (режим "на себя") реактор переводят в режим отгонки, для чего открывают вентиль отгона спирта и закрывают вентиль возврата конденсата. Отбирают 200 кг предгона, используемого для промывки реактора. После этого прекращают подачу греющего пара и захолаживают реактор до 30°С путем подачи воды в теплообменник. Затем останавливают мешалку и после отстоя через нижний слив отбирают водно-щелочной слой, который может использоваться в других технологических процессах. Далее включают мешалку, нагрев, вакуумируют систему до остаточного давления 400 мБар и производят отбор очищенного продукта путем отгонки.

Отбор очищенного бесцветного спирта составляет 91,0% в пересчете на абсолютированный спирт. Содержание ацетальдегида 118 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 81,9%.

Пример 10.

Процесс осуществляется в условиях примера 9, но щелочную очистку ведут твердым NaOH в количестве 60 кг, а после проведения щелочной очистки в течении 4 часов в реакционную смесь добавляют мочевину в количестве 60 кг и дополнительно кипятят смесь в режиме возврата конденсата еще 1 час.

Отбор очищенного бесцветного спирта составляет 90,6% в пересчете на абсолютированный спирт. Содержание ацетальдегида 47 мг/дм3, высококипящие примесные соединения отсутствуют. Степень очистки от ацетальдегида составляет 94,4%.

Таким образом, заявленный способ щелочной очистки отходов спиртового производства от карбонильных соединений, отличающийся тем, что содержание воды в отходах спиртового производства находится на уровне не менее 6% об., а щелочной агент подается в массовом отношении от 0,2 до 5%, позволяет получать очищенный спирт с выходом не менее 87% и остаточным содержанием ацетальдегида не более 20% от исходного, а также полностью соответствует критериям новизны и полезности. По сравнению с прототипом заявленный способ позволяет увеличить выход целевого продукта, отказаться от технически сложной аппаратуры для точного контроля рН, а также либо обеспечить аналогичную глубину очистки при меньшем количестве используемых реагентов и технологических стадий процесса, либо провести глубокую очистку до остаточного содержания ацетальдегида не более 10% от исходного при таком же количества реагентов и технологических стадий.

Похожие патенты RU2775964C1

название год авторы номер документа
Способ получения этилацетата 2021
  • Аристов Андрей Вячеславович
  • Голубовский Виталий Анатольевич
  • Ершов Михаил Александрович
  • Савеленко Всеволод Дмитриевич
RU2771241C1
СПОСОБ ОЧИСТКИ ФРАКЦИИ ГОЛОВНОЙ ЭТИЛОВОГО СПИРТА 2019
  • Ахметзянов Александр Минахметович
RU2686071C1
Альтернативное топливо для бензиновых двигателей 2022
  • Ершов Михаил Александрович
  • Савеленко Всеволод Дмитриевич
  • Климов Никита Александрович
  • Буров Никита Олегович
  • Орлов Федор Сергеевич
RU2805916C1
СПОСОБ ПРОИЗВОДСТВА СПИРТА ЭТИЛОВОГО РЕКТИФИКОВАННОГО "ЛЮКС" 1998
  • Алексеев В.П.
  • Грунин Е.А.
RU2136758C1
Способ получения сложных эфиров карбоновых кислот 2022
  • Ершов Михаил Александрович
  • Савеленко Всеволод Дмитриевич
  • Алексанян Давид Робертович
  • Мухина Дарья Юрьевна
  • Рехлецкая Екатерина Станиславовна
RU2813102C1
СПОСОБ ПРОИЗВОДСТВА ВОДКИ 1997
  • Аристович В.Ю.
  • Аристович Ю.В.
  • Давыдов Ю.Ф.
  • Лаптев Ю.А.
  • Рассказов В.И.
  • Соколов А.Ю.
RU2131921C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПЕРЕРАБОТКИ ЗЕРНОВОЙ БРАЖКИ В ПРОИЗВОДСТВЕ РЕКТИФИКОВАННОГО СПИРТА 2018
  • Ахметзянов Александр Минахметович
RU2663723C1
СПОСОБ ПОЛУЧЕНИЯ СПИРТА 1995
  • Соколов А.Ю.
  • Аристович В.Ю.
  • Лосев Б.Д.
  • Аристович Ю.В.
RU2093239C1
Способ очистки оксида пропилена от примесей карбонильных и карбоксильных соединений 2019
  • Дронов Сергей Вячеславович
  • Клементьев Василий Николаевич
  • Кулагин Андрей Михайлович
  • Луговской Сергей Анатольевич
  • Потехин Вячеслав Вячеславович
RU2722835C1
СПОСОБ ОЧИСТКИ ЭТИЛОВОГО СПИРТА 1994
  • Шаповалов О.И.
  • Щупляк А.А.
  • Немцина И.А.
  • Хохлов А.Л.
RU2043780C1

Реферат патента 2022 года Способ очистки отходов спиртового производства

Изобретение относится к способу очистки отходов спиртового производства от карбонильных соединений обработкой щелочным агентом с выделением очищенного продукта перегонкой, причем используются обводненные отходы спиртового производства с содержанием воды не менее 6% об. и щелочной агент в массовом отношении от 0,2 до 5% и перед перегонкой осуществляют работу реактора в режиме возврата конденсата. Целью настоящего изобретения является разработка эффективного способа очистки отходов спиртового производства от карбонильных соединений, позволяющего получать очищенный спирт с выходом не менее 87% и остаточным содержанием ацетальдегида не более 20% от исходного. Заявленный способ позволяет увеличить выход целевого продукта, отказаться от технически сложной аппаратуры для точного контроля рН, а также либо обеспечить аналогичную глубину очистки при меньшем количестве используемых реагентов и технологических стадий процесса, либо провести глубокую очистку до остаточного содержания ацетальдегида не более 10% от исходного при таком же количестве реагентов и технологических стадий. 3 з.п. ф-лы, 1 табл., 10 пр.

Формула изобретения RU 2 775 964 C1

1. Способ очистки отходов спиртового производства от карбонильных соединений обработкой щелочным агентом с выделением очищенного продукта перегонкой, отличающийся тем, что используются обводненные отходы спиртового производства с содержанием воды не менее 6% об. и щелочной агент в массовом отношении от 0,2 до 5% и перед перегонкой осуществляют работу реактора в режиме возврата конденсата.

2. Способ очистки отходов спиртового производства по п. 1, отличающийся тем, что в качестве щелочного агента используют гидроокиси калия или натрия в сухом виде или в водных растворах.

3. Способ очистки отходов спиртового производства по п. 1 или 2, отличающийся тем, что после щелочной обработки реакционная смесь дополнительно обрабатывается первичным амином.

4. Способ очистки отходов спиртового производства по п. 3, отличающийся тем, что в качестве первичного амина используются вещества или смеси веществ общей формулой: H2N-R, где R - углеводородный радикал с количеством атомов углерода от 1 до 4; -С2Н4ОН; -C(O)NH2; -ОН; -NH2.

Документы, цитированные в отчете о поиске Патент 2022 года RU2775964C1

СПОСОБ ОЧИСТКИ ФРАКЦИИ ГОЛОВНОЙ ЭТИЛОВОГО СПИРТА 2019
  • Ахметзянов Александр Минахметович
RU2686071C1
RU 2001123598 А, 20.07.2003
СПОСОБ ПЕРЕРАБОТКИ ЭФИРО-АЛЬДЕГИДНОЙ ФРАКЦИИ 1999
  • Гареев Г.А.
  • Першин Н.С.
  • Бовт В.В.
  • Мисюков Н.В.
  • Бжицкий В.А.
RU2158727C2
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ СПИРТОВОГО ПРОИЗВОДСТВА (ВАРИАНТЫ) 2004
  • Мисюков Николай Васильевич
  • Бжицкий Владимир Анатольевич
  • Жуков Юрий Николаевич
RU2272018C1
СПОСОБ ПЕРЕРАБОТКИ ФРАКЦИИ ГОЛОВНОЙ ЭТИЛОВОГО СПИРТА И КОНЦЕНТРАТА ГОЛОВНОЙ ФРАКЦИИ 2001
  • Мисюков Н.В.
  • Бжицкий В.А.
  • Ананьин А.А.
  • Жуков Ю.Н.
  • Янкилевич В.М.
RU2183616C2
УСТРОЙСТВО ДЛЯ СЧЕТА ОСЕЙ И ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ДВИЖЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА 1995
  • Литвин А.Г.
  • Савицкий А.Г.
RU2091260C1

RU 2 775 964 C1

Авторы

Аристов Андрей Вячеславович

Голубовский Виталий Анатольевич

Ершов Михаил Александрович

Савеленко Всеволод Дмитриевич

Даты

2022-07-12Публикация

2021-04-30Подача