Способ получения этилацетата Российский патент 2022 года по МПК C07C31/08 C07C67/03 C07C69/12 

Описание патента на изобретение RU2771241C1

Изобретение относится к химической промышленности, в частности к способу получения этилацетата этерификацией уксусной кислоты.

Способ производства сложных эфиров этерификацией низкомолекулярных карбоновых кислот в присутствии кислотного катализатора хорошо известны в химической отрасли и представлены во множестве патентов, предлагающих различные изменения в технологическом оформлении процесса. (Патенты US 5231222,1993 г., GB 1173089,1969 г., GB 1262645,1972 г.).

Типичный способ заключается в проведении реакции между уксусной кислотой и этанолом в присутствии катализатора кислотной природы в реакционной зоне аппарата, полученный этилацетат связывает образующуюся в процессе воду в азеотропном соотношении и отводится через ректификационную зону в конденсатор, а затем в сепаратор. В сепараторе азеотропная смесь этилацетата и воды разделяется на водную и органическую фазу, последняя из которых отправляется на дальнейшее разделение.

В любой реакции этерификации на один моль эфира образуется один моль воды, и, учитывая замкнутость реакционной зоны, весь объем воды должен отводиться вместе с эфиром в виде азеотропной смеси. Однако в зависимости от типа эфира значительно меняется соотношение образующегося по стехиометрии количества воды и воды, отходящей в виде азеотропа. В таблице 1 указаны данные соотношения для сложных эфиров уксусной кислоты и спиртов С1-С5.

Как видно из таблицы, в процессе производства этилацетата на 100 г безводного спирта образуется 23,6 г избыточной воды, которую необходимо убрать из реакционной зоны.

Известен способ контроля количества воды в реакционной зоне в процессе производства этилацетата путем подачи части органической фазы из сепаратора на выходе из ректификационной зоны обратно в зону реакции в качестве азеотропного агента. Также вместо органической фазы из сепаратора в реакционную зону можно направлять очищенный от воды этилацетат после мембранного разделителя или товарный этилацетат (Патент US 6768021 В2, 2004 г.). Данный способ является наиболее близким к настоящему изобретению и был выбран в качестве прототипа.

Недостатком указанного способа является необходимость использования большого количества этилацетата для удаления всей избыточной воды из реакционной зоны. Особенно явным данный недостаток становится при использовании в качестве источника спирта обводненного этанола.

Целью настоящего изобретения является разработка эффективного способа получения этилацетата из обводненных отходов спиртового производства.

Поставленная цель достигается использованием в качестве сырья отходов спиртового производства, содержащих спирты С3-С5, или этих же отходов, прошедших предварительную очистку от карбонильных соединений.

В ходе экспериментальных исследований было обнаружено, что спирты С3-С5 в составе сырья процесса этерификации позволяют снизить минимальное необходимое количество флегмы, подаваемой в реактор для отбора всей образующейся воды в виде азеотропа. При взаимодействии данных спиртов с уксусной кислотой образуется меньшее относительное количество воды, а азеотропные смеси полученных ацетатов имеют большую долю воды. Кроме того, эфиры спиртов С3-С5 меньше растворяются в воде и растворяют в себе меньшее количество воды по сравнению с этилацетатом, поэтому в органической фазе сепаратора после ректификационной зоны содержится меньше воды, что также положительно сказывается на минимальном необходимом флегмовом числе.

Отходы спиртового производства, содержащие спирты С3-С5, обычно имеют в своем составе примеси карбонильных соединений и, в первую очередь, ацетальдегида. Данные примеси напрямую не влияют на процесс этерификации, но в присутствии кислотного катализатора вступают в реакции альдольно-кротоновой конденсации с последующей полимеризацией, в ходе которых образуются смолистые вещества, которые откладываются в реакционной зоне аппарата. Для удаления данных отложений необходимо останавливать производство и проводить очистку реактора. Избежать частой остановки реактора можно путем снижения концентрации карбонильных соединений в отходах спиртового производства. Например, с помощью обработки отходов щелочным агентом с выделением очищенного продукта перегонкой.

Предлагаемое техническое решение иллюстрируется конкретными примерами выполнения.

Пример 1 (сравнительный)

Процесс этерификации уксусной кислоты ведут в аппарате, состоящем из реакционного куба, выполненного из нержавеющей стали, и ректификационной колонной с 30 теоретическими тарелками.

Отходы спиртового производства и уксусная кислота подаются в реактор в эквимолярном соотношении в пересчете на чистые спирты и уксусную кислоту, но из-за наличия рецикла органической фазы в аппарате достигается небольшой избыток этанола. В качестве катализатора используется серная кислота.

Пары из реакционной зоны, состоящие из эфиров, спиртов, уксусной кислоты и воды, поступают в ректификационную зону, где происходит их разделение. Непрореагировавшие спирты и уксусная кислота возвращаются в реакционную зону, а азеотропная смесь эфиров и воды направляется в воздушный холодильник и далее в сепаратор. Перед подачей в сепаратор в данную смесь добавляют дополнительное количество воды, чтобы снизить содержание спирта в органической фазе. Часть органической фазы, состоящей преимущественно из сложных эфиров, направляется на стадию разделения, а часть возвращается в реакционный аппарат в виде флегмы и азеотропного агента.

В качестве сырья используется технический этиловый спирт. Содержание воды - 4,9% масс, содержание спиртов С3-С5 - отсутствие, содержание альдегидов в пересчете на ацетальдегид - менее 1 мг/дм3. В качестве уксусной кислоты используется водный раствор с массовой концентрацией 95%.

Флегмовое число задано на уровне 3.

После отладки режима при заданном флегмовом числе был получен очищенный этилацетат с содержанием уксусной кислоты 350 ррт. Удаление уксусной кислоты из эфира является одной из главных задач ректификационной секции реакционного аппарата, поэтому по остаточному содержанию кислоты можно судить об эффективности процесса разделения в колонне.

Примеры 2-5 (сравнительные)

Процессы осуществляются в условиях примера 1, но флегмовое число задано на уровне от 3,5 до 5 с шагом 0,5. Содержание уксусной кислоты в очищенном этилацетата после отладки режима при заданных флегмовых числах представлены в таблице 2.

Пример 6

Процесс осуществляется в условиях примера 1, но в качестве сырья используется концентрат сивушных и головных примесей. Содержание воды - 12,0% масс, содержание спиртов С3-С5 - 20 890 мг/дм3, содержание альдегидов в пересчете на ацетальдегид - 2614 мг/дм3. В качестве уксусной кислоты используется водный раствор с массовой концентрацией 95%.

Флегмовое число задано на уровне 3. После отладки режима при заданном флегмовом числе был получен очищенный этилацетат с содержанием уксусной кислоты 410 ррт.

Примеры 7-10

Процессы осуществляются в условиях примера 6, но флегмовое число задано на уровне от 3,5 до 5 с шагом 0,5. Содержание уксусной кислоты в очищенном этилацетата после отладки режима при заданных флегмовых числах представлены в таблице 2.

Пример 11

Процесс осуществляется в условиях примера 1, но в качестве сырья используется концентрат сивушных и головных примесей. Содержание воды - 7,2% масс, содержание спиртов С3-С5 - 3455 мг/дм3, содержание альдегидов в пересчете на ацетальдегид - 736 мг/дм3. В качестве уксусной кислоты используется водный раствор с массовой концентрацией 95%.

Флегмовое число задано на уровне 3. После отладки режима при заданном флегмовом числе был получен очищенный этилацетат с содержанием уксусной кислоты 370 ррт.

Примеры 12-15

Процессы осуществляются в условиях примера 11, но флегмовое число задано на уровне от 3,5 до 5 с шагом 0,5. Содержание уксусной кислоты в очищенном этилацетата после отладки режима при заданных флегмовых числах представлены в таблице 2.

Пример 16

Процесс осуществляется в условиях примера 6, но используемый в качестве сырья концентрат сивушных и головных примесей был подвергнут предварительной щелочной очистке с целью удаления карбонильных соединений.

Очистка проводилась путем кипячения смеси отходов спиртового производства и раствора гидроокиси натрия (50% масс.) с массовым расходом 2,0% в течение 4 часов с последующим отделением очищенного спирта от кубового остатка с помощью перегонки.

Характеристики очищенного спирта: содержание воды - 8,4% масс, содержание спиртов С3-С5 - 17325 мг/дм3, содержание альдегидов в пересчете на ацетальдегид - 233 мг/дм3. В качестве уксусной кислоты используется водный раствор с массовой концентрацией 95%.

Флегмовое число задано на уровне 3. После отладки режима при заданном флегмовом числе был получен очищенный этилацетат с содержанием уксусной кислоты 250 ррт.

Примеры 17-20

Процессы осуществляются в условиях примера 16, но флегмовое число задано на уровне от 3,5 до 5 с шагом 0,5. Содержание уксусной кислоты в очищенном этилацетата после отладки режима при заданных флегмовых числах представлены в таблице 2.

По данным о содержании уксусной кислоты в товарном этилацетате в зависимости от флегмового числа можно найти минимально необходимое флегмовое число для каждого типа сырья, которое позволяет получить эфир с массовой концентрацией уксусной кислоты не более 0,004% (или 40 ррт), что соответствует требованиям ГОСТ 8981-78 для этилацетата марки А высшего сорта.

Таким образом, заявленный способ получения этилацетата из обводненных отходов спиртового производства, отличающийся тем, что отходы дополнительно содержат спирты С3-С5, позволяет осуществлять процесс при меньшей рециркуляции эфиров в качестве флегмы и азеотропного агента, что снижает нагрузку на ректификационную часть аппарата, а также системы подвода тепла и охлаждения отходящих из колонны продуктов. Перед проведением реакции отходы спиртового производства могут быть дополнительно очищены от карбонильных соединений для уменьшения количества смолистых отложений в реакторе и увеличения времени его непрерывной работы.

Похожие патенты RU2771241C1

название год авторы номер документа
Способ очистки отходов спиртового производства 2021
  • Аристов Андрей Вячеславович
  • Голубовский Виталий Анатольевич
  • Ершов Михаил Александрович
  • Савеленко Всеволод Дмитриевич
RU2775964C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ ЭФИРОВ АМИЛОВЫХ СПИРТОВ 2012
  • Яновский Вячеслав Александрович
  • Чуркин Руслан Александрович
  • Андропов Михаил Олегович
  • Бобылев Алексей Владимирович
  • Сачков Виктор Иванович
RU2537292C2
Способ получения уксусной кислоты и метилэтилкетона 2019
  • Староконь Евгений Владимирович
  • Харитонов Александр Сергеевич
  • Амосова Татьяна Викторовна
  • Парфенов Михаил Владимирович
  • Иванов Дмитрий Петрович
  • Носков Александр Степанович
RU2715698C1
Способ очистки оксида пропилена от примесей карбонильных и карбоксильных соединений 2019
  • Дронов Сергей Вячеславович
  • Клементьев Василий Николаевич
  • Кулагин Андрей Михайлович
  • Луговской Сергей Анатольевич
  • Потехин Вячеслав Вячеславович
RU2722835C1
СПОСОБ ПРОИЗВОДСТВА СПИРТА ЭТИЛОВОГО РЕКТИФИКОВАННОГО "ЛЮКС" 1998
  • Алексеев В.П.
  • Грунин Е.А.
RU2136758C1
СПОСОБ ПОЛУЧЕНИЯ ЭТИЛ-ТРЕТ-БУТИЛОВОГО ЭФИРА 2006
  • Чуркин Владимир Николаевич
  • Смирнов Владимир Александрович
  • Шляпников Алексей Михайлович
  • Карпов Игорь Павлович
  • Бубнова Ирина Александровна
  • Бубенков Владимир Петрович
  • Стряхилева Маргарита Николаевна
RU2327682C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ ЭФИРОВ 1992
  • Энтони Джозеф Папа[Us]
  • Дэвид Роберт Брайант[Us]
RU2045513C1
СПОСОБ ВЫДЕЛЕНИЯ ТРЕТИЧНЫХ ОЛЕФИНОВ C-C 1992
  • Горшков В.А.
  • Павлов С.Ю.
  • Чуркин В.Н.
  • Карпов И.П.
  • Курбатов В.А.
  • Лиакумович А.Г.
  • Павлова И.П.
  • Бубнова И.А.
  • Смирнов В.А.
RU2005710C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНИЧЕСКИХ ПЕРОКСИДОВ ИЛИ ПЕРОКСИКЕТАЛЕЙ 2020
  • Аристов Андрей Вячеславович
  • Овчинников Кирилл Александрович
  • Коньков Сергей Александрович
RU2755085C1
Способ получения сложных эфиров карбоновых кислот 2022
  • Ершов Михаил Александрович
  • Савеленко Всеволод Дмитриевич
  • Алексанян Давид Робертович
  • Мухина Дарья Юрьевна
  • Рехлецкая Екатерина Станиславовна
RU2813102C1

Реферат патента 2022 года Способ получения этилацетата

Изобретение относится к способу получения этилацетата этерификацией уксусной кислоты, где используются отходы спиртового производства, содержащие спирты С3-С5 в концентрации не менее 3 300 мг/дм3 (0,4% масс.), позволяющие снизить минимальное необходимое количество флегмы, подаваемой в реактор для отбора всей образующейся воды в виде азеотропа. Целью настоящего изобретения является разработка эффективного способа получения этилацетата из обводненных отходов спиртового производства. Заявленный способ позволяет осуществлять процесс при меньшей рециркуляции эфиров в качестве флегмы и азеотропного агента, что снижает нагрузку на ректификационную часть аппарата, а также системы подвода тепла и охлаждения отходящих из колонны продуктов. 2 з.п. ф-лы, 2 табл., 20 пр.

Формула изобретения RU 2 771 241 C1

1. Способ получения этилацетата этерификацией уксусной кислоты, отличающийся тем, что используются отходы спиртового производства, содержащие спирты С3-С5 в концентрации не менее 3 300 мг/дм3 (0,4% масс.), позволяющие снизить минимальное необходимое количество флегмы, подаваемой в реактор для отбора всей образующейся воды в виде азеотропа.

2. Способ получения этилацетата этерификацией уксусной кислоты по п. 1, отличающийся тем, что отходы спиртового производства предварительно очищаются от карбонильных соединений.

3. Способ получения этилацетата этерификацией уксусной кислоты по п. 2, отличающийся тем, что очистку проводят путем обработки отходов спиртового производства щелочным агентом с выделением очищенного продукта перегонкой.

Документы, цитированные в отчете о поиске Патент 2022 года RU2771241C1

СМЕСЕВОЙ РАСТВОРИТЕЛЬ НА ОСНОВЕ СИВУШНОГО МАСЛА 2000
  • Гревцев А.Ф.
  • Губрий Г.Г.
  • Коломийцева М.В.
  • Мусиенко Е.В.
  • Петыхин Ю.М.
RU2174974C1
Жумаева З.Э., Мукимова Г.Ж., Умирова Г.А
Способы переработки отходов биохимического производства (эфир-альдегидная фракция и сивушные масла)
Universum: Технические науки : электрон
научн
журн
Способ восстановления спиралей из вольфрамовой проволоки для электрических ламп накаливания, наполненных газом 1924
  • Вейнрейх А.С.
  • Гладков К.К.
SU2020A1
СПОСОБ ОЧИСТКИ ФРАКЦИИ ГОЛОВНОЙ ЭТИЛОВОГО СПИРТА 2019
  • Ахметзянов Александр Минахметович
RU2686071C1
US 6768021 В2, 27.07.2004.

RU 2 771 241 C1

Авторы

Аристов Андрей Вячеславович

Голубовский Виталий Анатольевич

Ершов Михаил Александрович

Савеленко Всеволод Дмитриевич

Даты

2022-04-28Публикация

2021-04-30Подача