Корпус обитаемого аппарата для глубоководного погружения Российский патент 2022 года по МПК B63G8/00 

Описание патента на изобретение RU2782055C1

Изобретение относится к устройствам, предназначенным для плавания под водой и погружающимся на большие глубины.

Существующие устройства глубоководного погружения - имеют обычно два цилиндрических в поперечном сечении корпуса: наружный и внутренний [1].

Внутренний корпус - для размещения экипажа и соответствующих устройств - изготавливается из особого материала, способного выдерживать значительные внешние воздействия. Наружный корпус служит для предохранения от механических повреждений различного рода коммуникаций, находящихся между внутренним и наружным корпусом. При этом наружный корпус проницаемый и давление воды на внешнюю и внутреннюю поверхности наружного корпуса одинаково. Кроме этого наружный корпус придает дополнительную жесткость внутреннему корпусу.

Другим примером является батискаф (Диомидов М.Н., Дмитриев А.Н. Подводные аппараты. Ленинград.: Судостроение. 1966.). Он состоит из легкого корпуса - поплавка, заполненного более легким, чем вода, наполнителем (бензином) и стального шара - гондолы, в которой размещается экипаж, аппаратура управления, система регенерации воздуха и т.д. В поплавке находятся также цистерны с балластом и аккумуляторные батареи. Плавучесть батискафа регулируется сбрасыванием твердого балласта и выпуском бензина из маневровой цистерны.

Недостатком существующей конструкции является ограниченная глубина погружения. Для увеличения глубины погружения необходимо либо:

а) уменьшить диаметр внутреннего корпуса (при этом ухудшается тактико-технические данные и устройство не сможет выполнять возложенные на него задачи);

б) увеличить толщину внутреннего корпуса (увеличение толщины стенки свыше 100 мм невозможно по техническим причинам);

в) поиск новых материалов с большим значением модуля сдвига G и малым значением коэффициента Пуассона μ (пока эти показатели у применяемых твердых сплавов не очень высоки по сравнению с обычной сталью).

Заявляемый объект содержит непроницаемый корпус, выполненный предварительно напряженным на растяжение внешними по отношению к нему устройствами.

Технический результат, получаемый при осуществлении заявляемого объекта, заключается в уменьшении сжимающих напряжений, появляющихся в непроницаемом корпусе при глубоководном погружении.

Ограничительные признаки: наружный проницаемый корпус и внутренний непроницаемый корпус.

Отличительные признаки: внутренние проницаемые оболочки с натяжными устройствами на внутренний непроницаемый корпус.

Причинно-следственная связь между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом заключается в следующем.

С помощью канатной системы, связывающей внутренний и наружный корпуса или проницаемых оболочек, имеющих диаметр больший, чем внешний диаметр непроницаемого корпуса, создается напряженное состояние растяжения определенной величины, которое, при погружении подводного аппарата, уменьшает сжимающие напряжения, вызываемые в капсуле внешним давлением окружающей воды. При необходимости может быть использована система из оболочек большего диаметра, чем первая, растягивающая последнюю при помощи аналогичных болтовых соединений, и, тем самым, увеличивающих растягивающее усилие поверхности капсулы.

На фиг. 1, 2 изображены схемы устройств и результаты численных расчетов. На фиг. 1а приведена внешняя схема устройства с одной проникающей опорной оболочкой; на фиг. 1б - фрагмент поверхности в продольном направлении; на фиг. 1в - крепление проникающей опорной оболочки к корпусу капсулы; на фиг. 1г - схема расчета устройства. На фиг. 2 приведена схема растяжения внутреннего корпуса канатной системой (фиг. 2а) и результаты расчетов (фиг. 2б).

Корпус для глубоководного погружения обитаемого аппарата состоит из внутреннего непроницаемого корпуса 1, проницаемой опорной оболочки 2 (нескольких оболочек или канатной системы), наружного проницаемого корпуса 3, натяжных элементов 4 (фиг. 1, 2).

Работа устройства.

Непроницаемый корпус 1 упруго растягивается натяжными элементами 4 через опорную проницаемую оболочку 2, создающими предварительно напряженное состояние растяжения в стенках капсулы.

При погружении глубоководного аппарата вода проникает через наружный корпус 3 и оболочки 2 к непроницаемому корпусу 1, оказывая в стенках корпуса всестороннее сжатие. Но, так как стенки корпуса предварительно имели напряженное состояние растяжения, то величина сжимающих напряжений в стенках корпуса будет меньше, чем, если бы подводный аппарат не имел предварительного нагружения растяжения, а, следовательно, можно осуществлять безаварийное погружение на большую глубину. Проницаемой опорной оболочкой могут быть обручи различной ширины, расположенные на расчетном расстоянии вдоль капсулы, если она цилиндрической формы.

Приведем пример расчета корпуса субмарины в случае применения проницаемой опорной оболочки. Ввиду симметрии, рассмотрим в поперечном сечении часть кольца с центральным углом α (фиг. 1г), имея ввиду, что следующий болт в сечении находится на расстоянии, соответствующему углу 2α, будем полагать, что перемещение вдоль х3 отсутствует, то есть рассматривается плоское деформированное состояние, в соответствие с которым U3=0, σ3132=0; ε13х2333=0, где U3 - перемещение по координате х3, σij - напряжения; εij - деформации. На фиг. 1г: I - оболочка непроницаемого корпуса, II - область залитая водой, в которой давление равно внешнему, III - опорная проницаемая оболочка.

В соответствие с линейной теорией упругости в Эйлеровой системе координат запишем следующие уравнения:

1. Уравнение равновесия

2. Уравнение состояния (закон Гука)

3. Уравнение сохранения массы

где G - модуль сдвига, k - коэффициент объема сжатия, σ - гиростатическое напряжение; приняты тензорные обозначения (суммирование по повторяющимся индексам i, j;

Граничные условия (фиг. 1г)

Здесь Р0 - давление в обитаемом аппарате, Р1 - давление воды, Р2 - давление на S9, Р3 - давление на S11. Давление Р2 формализуем как давление растяжения, оказываемое на корпус через болтовое соединение 4 (фиг. 1в), Р3 - давление гайки болтового соединения (фиг. 1в) на поверхность S11 проницаемой опорной оболочки.

Решение системы (1, 2, 3) с учетом граничных условий (4) осуществлялось численным методом по алгоритмам [2] и программам [3].

Результаты решения задачи.

Принято: R=5000 мм; Н1=70 мм; Н2=20 мм; Δ=5 мм; dб=40 мм; dш=80 мм; α=2,9°. Глубина погружения 1000 м.

Здесь R - внутренний радиус непроницаемой оболочки, H1 - толщина непроницаемой оболочки, Н2 - толщина проницаемой опорной оболочки, Δ - зазор между оболочками 1 и 3, dб - диаметр болта, dш - диаметр шайбы, материал (сплав «АК-32»): G=18000 кг/мм2, k=0,0139.

Для простоты принято, что непроницаемый корпус, проницаемая оболочка и болт выполнены из одного материала.

По нижней границе примем, что при затяжке в сечении болта напряжение растяжения будет σб=5 кг/мм2, тогда на шайбу, при заданных размерах будет среднее давление в 3 раза меньше. Значит, получим: Р2б-P1; P3ш1;

На фиг. 2б представлены некоторые результаты расчета при Р0=0,01 кг/мм2, Р1=1 кг/мм2, Р2=4 кг/мм2, Р3=2,6 кг/мм2.

Наибольшим сжимающим напряжением является σ22. Пунктирной линией показана эпюра σ22 по сечению непроницаемой оболочки, когда субмарина имеет только наружный и внутренний корпуса (как в прототипе). Оно примерно одинаково по всему сечению и составляет 43 кг/мм2 (цифры на фиг. 2б приведены в кг/мм2).

Сплошными линиями на фиг. 2б приведены эпюры σ22 по сечению корпуса при наличии опорной проницаемой оболочки. Видим, что сжимающие напряжения σ22 намного меньше (по абсолютной величине) по предлагаемому способу с применением проницающей оболочки, чем по способу и устройству прототипа.

ЛИТЕРАТУРА

1. Барабанов Н.В. Конструкция корпусов судов: Судостроение, 1985. - 540 С.

2. Одиноков В.И., Каплунов Б.Г., Песков А.В., Баков А.А. Математическое моделирование сложных технологических процессов. М.: Наука, 2008. - 176 С.

3. Свидетельство о государственной регистрации программы для ЭВМ №2012661389. ОДИССЕЙ // Одиноков В.И., Прокудин А.Н., Сергеева A.M., Севастьянов Г.М. Зарегистрировано в Реестре программ для ЭВМ 13.12.2012.

Похожие патенты RU2782055C1

название год авторы номер документа
ПОДВОДНЫЙ ПАРУСНЫЙ КАТАМАРАН И ЕГО СПОСОБ ЛИДИРОВАНИЯ 1997
  • Щепкин В.В.
RU2170190C2
ТОРОВЫЙ ШПАНГОУТ 2017
  • Яковлев Владимир Сергеевич
  • Бардадим Денис Анатольевич
  • Саломатов Артур Юрьевич
  • Юргенсон Игорь Александрович
RU2657719C1
Мартенситный двигатель 1988
  • Хамидулин Булат Шаймярдянович
  • Пригода Виталий Васильевич
  • Остапенко Александр Витальевич
  • Михайлов Сергей Александрович
  • Руденко Александр Иванович
SU1615440A1
Корпус глубоководного аппарата из композиционных материалов 2017
  • Васильев Валерий Витальевич
  • Разин Александр Федорович
  • Сисаури Виталий Ираклиевич
RU2649117C1
СПОСОБ РЕГУЛИРОВАНИЯ ПЛАВУЧЕСТИ ПОДВОДНОГО АППАРАТА 2013
  • Метёлкин Виктор Иванович
RU2524514C1
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ ГИДРОФОН С КОМПЕНСАЦИЕЙ СТАТИЧЕСКОГО ДАВЛЕНИЯ 2019
  • Агафонов Вадим Михайлович
  • Егоров Егор Владимирович
  • Зайцев Дмитрий Леонидович
  • Шабалина Анна Сергеевна
  • Рыжков Максим Александрович
RU2724296C1
ГЛУБОКОВОДНЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ 2021
  • Китаев Владимир Николаевич
  • Есипова Дарья Михайловна
  • Спрогис Ольга Александровна
RU2758999C1
ГАЗОВЫЙ КОМПЕНСАТОР ДЛЯ ГЛУБОКОВОДНЫХ ПРИБОРОВ 1971
  • Водопьянов М.Э.
  • Ринкис А.Я.
  • Степанов Б.М.
  • Щеголев В.В.
SU1840758A1
ГЛУБОКОВОДНЫЙ ДОБЫЧНОЙ КОМПЛЕКС И ТЕЛЕУПРАВЛЯЕМЫЙ ПОДВОДНЫЙ РОБОТ 2002
  • Шестаченко Ф.А.
  • Маракуца Г.С.
  • Тетюхин В.В.
  • Львович Ю.А.
  • Ястребов В.С.
  • Човушян Э.О.
  • Терехов А.Н.
  • Каплун Ф.В.
  • Хервиг Кнут
RU2214510C1
УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ВЫСОКОГО ДАВЛЕНИЯ И ВЫСОКОЙ ТЕМПЕРАТУРЫ 2011
  • Шурин Ярослав Ильич
  • Туркин Александр Иванович
  • Сурков Никита Викторович
RU2476741C1

Иллюстрации к изобретению RU 2 782 055 C1

Реферат патента 2022 года Корпус обитаемого аппарата для глубоководного погружения

Изобретение относится к устройствам, предназначенным для плавания под водой и погружающимся на большие глубины. Корпус обитаемого аппарата для глубоководного погружения состоит из внутреннего непроницаемого корпуса и наружного проницаемого корпуса. Непроницаемый корпус выполнен предварительно напряженным на растяжение внешней по отношению к нему канатной системой или опорной оболочкой. Достигается уменьшение сжимающих напряжений, появляющихся в непроницаемом корпусе при глубоководном погружении. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 782 055 C1

1. Корпус обитаемого аппарата для глубоководного погружения, состоящий из внутреннего непроницаемого корпуса и наружного проницаемого корпуса, отличающийся тем, что непроницаемый корпус выполнен предварительно напряженным на растяжение внешней по отношению к нему канатной системой или опорной оболочкой.

2. Корпус по п.1, отличающийся тем, что наружную поверхность непроницаемого корпуса облегает с зазором проницаемая опорная оболочка, снабженная устройствами для растяжения поверхности непроницаемой капсулы.

3. Корпус по п.2, отличающийся тем, что в качестве проницаемой опорной оболочки могут быть использованы металлические обручи, расположенные вдоль аппарата, снабженные устройством, растягивающим поверхность непроницаемого корпуса.

4. Корпус по п.1, отличающийся тем, что внутренний и наружный корпуса аппарата связаны между собой системой канатов, имеющих механизмы натяжения.

Документы, цитированные в отчете о поиске Патент 2022 года RU2782055C1

Датчик магнитного расходомера 1961
  • Звенигородский Э.Г.
SU149901A1
ПОДВОДНОЕ СУДНО 2016
  • Слюсарь Анатолий Емельянович
RU2702464C1
RU 2017139956 A, 17.05.2019
СПОСОБ УПРАВЛЕНИЯ ПЕРЕКЛЮЧЕНИЕМ АВТОМАТИЗИРОВАННОЙ СТУПЕНЧАТОЙ КОРОБКИ ПЕРЕДАЧ 2007
  • Вольфганг Вернер
  • Вюртнер Майк
  • Заутер Инго
RU2434766C2
УСТРОЙСТВО ДЛЯ УДЕРЖАНИЯ И ТРАНСПОРТИРОВАНИЯ ВЯЗКОУПРУГОПЛАСТИЧНЫХ И ВЯЗКОПЛАСТИЧНЫХ ПИЩЕВЫХ МАСС 2004
  • Щербаков Д.С.
  • Чертов Е.Д.
  • Носов О.А.
  • Елисеев О.Н.
RU2264713C1

RU 2 782 055 C1

Авторы

Одиноков Валерий Иванович

Евстигнеев Алексей Иванович

Дмитриев Эдуард Анатольевич

Бурменский Андрей Дмитриевич

Боярчук Иван Михайлович

Даты

2022-10-21Публикация

2022-01-11Подача