СПОСОБ ПОЛУЧЕНИЯ БИПОРИСТОГО ГРАНУЛИРОВАННОГО ОКСИДА АЛЮМИНИЯ Российский патент 2023 года по МПК B01J21/04 B01J35/10 B82Y40/00 C01F7/24 

Описание патента на изобретение RU2789338C1

Изобретение относится к области химической технологии и может найти применение в производстве сорбентов и катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения гранулированного оксида алюминия, характеризующегося бипористой структурой.

Оксид алюминия и материалы на его основе находят широкое применение в различных отраслях, включая сорбцию различных веществ как из газовой, так и из жидкой фазы, гетерогенный катализ для различных окислительно-восстановительных и кислотно-основных каталитических процессов, протекающих как в газовой, так и в жидкой фазе. В большинстве областей использования оксид алюминия применяется в виде гранул цилиндрической или сферической формы диаметром 1-5 мм, поскольку это технологически более удобно. Однако при использовании гранулированных сорбентов и катализаторов возникают сложности, связанные с диффузионными затруднениями проникновения реагентов внутрь гранул и отвода продуктов из гранулы. Это связано с особенностями диффузии молекул как в газообразной, так и в жидкой фазе внутри пор нанометрового размера. Наличие диффузионных затруднений приводит к тому, что только поверхность гранул функционирует в сорбционном или каталитическом процессе, в то время как объем гранул оказывается не вовлеченным в процессы, что снижает общую эффективность использования гранул материала. Решением может являться создание гранулированного оксида алюминия с бипористой структурой, то есть чтобы в структуре помимо пор нанометрового размера присутствовали поры размером от 50 нм до нескольких микрометров, в которых диффузионные затруднения незначительны.

Известен носитель катализатора, включающий оксид алюминия и алюминий (патент РФ 2257261, B01J 21/04, опубл. 27.07.2005), в котором доля пор размером более 0,1 мкм в общем объеме открытых пор, равном 0,10-0,88 см3/г носителя, составляет, об.%: 10,0-88,5. Способ приготовления носителя включает формирование заготовки из порошка алюминия и неорганической добавки, окисление в режиме гидротермальной обработки при 200 °С 2 часа и последующее спекание при 700 °С 2 часа. Технический результат - получение носителя с удельной поверхностью от 28,6 до 135,7 м2/г, механической прочностью 1,4 - 10,1 МПа. Не смотря на относительно высокие прочностные характеристики и большой вклад макропор в структуру образца, метод является затратным, предполагает использование металлического алюминия, а получаемый продукт характеризуется невысокими значениями удельной поверхности.

Известен способ получения широкопористого оксида алюминия (патент РФ 2482061, С01F7/02, опубл. 20.05.2013], включающий осаждение раствора азотнокислого алюминия водным раствором аммиака при рН 7 и температуре 70 °С с последующим «старением» при указанных условиях в течение 3-5 ч., включающий стадию формования гранул гидроксида алюминия путем смешения одной части высушенного на распылительной сушилке осадка с двумя частями влажного осадка гидроксида при влажности формуемой пасты 58-66 % с последующими стадиями сушки и термической обработки. Получаемый оксид алюминия представляет собой γ-Al2O3, характеризующегося мономодальным распределением пор по размерам, величиной удельной поверхности, равной 340-370 м2/г, объемом пор - 0,82-1,09 см-/г, средний диаметр которых составляет 9,2-11 нм. Недостатком является то, что несмотря на высокие значения удельной поверхности, материал характеризуется только одним типом пор.

Наиболее близким является оксидный носитель, описанный в указанном патенте (патент РФ 2281164, B01J32/00, опубл. 10.08.2006). Носитель на металлической основе получают путем формирования металлического порошка, содержащего алюминий и другие порошкообразные компоненты, компоненты прокаливают при температуре спекания твердой фазы 1100 °С в течение 4 часов, полученную смесь подвергают мехактивации и помещают в пресс-форму, доступную для паров воды, и подвергают гидротермальной обработке, извлекают из пресс-формы сформованный продукт, который затем сушат и прокаливают. Недостатком метода является большое количество операций, в том числе энергетических затратных, таких как мехактивация и высокотемпературная обработка, а получаемый продукт характеризуется невысокими значениями удельной поверхности.

Технической задачей изобретения является создание технологически простого способа получения гранулированного оксида алюминия с бипористой структурой.

Цель достигается тем, что оксид алюминия получают путем интенсивного смешения псевдобемита, как предшественника оксида алюминия, с водой, содержащей небольшое количество азотной кислоты, а также с древесной мукой в количестве 2-8 масс.% от массы предшественника оксида алюминия, далее получаемая однородная пластичная масса подвергается формовке методом экструзии через фильеру диаметром 3 мм и термической обработке при 700 °С. В отличии от вышеуказанных примеров металлический алюминий не используется, соответственно исключается энергозатратная стадия гидротермальной обработки, протекающая при повышенных температурах и повышенном давлении и требующая использования специального автоклавного оборудования. Получаемый гранулированный оксид алюминия имеет удельную поверхность более 130 м2/г, объем пор более 0,45 см3/г, при этом оксид алюминия имеет два типа пор: размером 2-30 нм и размером от 30 нм до 5 мкм. Технический результат заключается в простом способе получения оксида алюминия с бипористой системой, пригодного для использования в сорбции, а также в качестве носителя для получения на его основе каталитических материалов.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Для приготовления оксида алюминия смешивается в течение 30 минут 100 г всевдобемита, 2 г древесной муки, предварительной просеянной через сито 125 мкм, 20 г вода и 1 мл раствора азотной кислоты. Полученная вязкая смесь подвергается формовке методом экструзии с использованием фильеры диаметром 3 мм. Полученный жгут нарезается на цилиндрические гранулы длиной около 5 мм. Гранулы подвергаются сушке при 120 °С в течение 4 часов, а затем прокалке при 700 °С 4 часа. Полученный образец оксида алюминия характеризуется удельной поверхностью более 130 м2/г, объёмом пор более 0,45 см3/г, а также бипористой структурой, представленной порами размером 2-30 нм и от 30 нм до 5 мкм.

Пример 2. Аналогичен примеру 1. Отличие состоит в том, что используют 3 г древесной муки.

Пример 3. Аналогичен примеру 1. Отличие состоит в том, что используют 5 г древесной муки.

Пример 4. Аналогичен примеру 1. Отличие состоит в том, что используют 8 г древесной муки.

В таблице 1 представлены сравнительные характеристики образцов предложенного бипористого гранулированного оксида алюминия, а также образца Al2O3, полученного без использования добавки древесной муки, и образца прототипа. Из представленных данных видно, что образцы по примерам 1-4 характеризуются достаточно высокими значениями удельной поверхностью 133-150 м2/г, объемом пор 0,455-0,566 см3/г, наличием пор размером более 100 нм общим объёмом 0,108-0,218 см3/г. Гранулы оксида алюминия характеризуются прочностью на раздавливание 5,8-9,7 Мпа, что является достаточной для эксплуатации гранул в реакторах со стационарным слоем сорбента или катализатора. Образец Al2O3, полученный без использования добавки древесной муки, характеризуется сопоставимой величиной удельной поверхности, однако объем пор размером более 100 нм значительно ниже - 0,045 см3/г. Таким образом, получение бипористого оксида алюминия с характеристиками не ниже, чем у прототипа, достигается только при использовании добавки древесной муки.

Таблица 1. Характеристики образцов оксида алюминия

Образец Добавка древесной муки, % мас. Объем пор по данным ртутной порометрии, см3 Объем пор более 100 нм, см3 Удельная поверхность, м2 Прочность гранул на раздавливание, МПа Al2O3 0 0,403 0,045 148 11,4 Пример 1 2 0,463 0,108 135 9,7 Пример 2 3 0,455 0,124 150 6,4 Пример 3 5 0,504 0,155 137 5,8 Пример 4 8 0,566 0,218 133 6,3 Прототип - 0,26 0,081 1,8 5,8

Способ является технически простым, добавление древесной муки позволяет получить оксид алюминия с бипористой структурой, включающей поры размером 2-30 нм и размером от 30 нм до 5 мкм, но при этом не требует усложнения технологических операций или добавления новых операций.

Похожие патенты RU2789338C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРОВ ДЕМЕТАЛЛИЗАЦИИ НЕФТЯНЫХ ФРАКЦИЙ 2014
  • Смирнов Владимир Константинович
  • Ирисова Капитолина Николаевна
  • Смирнов Олег Владимирович
  • Макеева Галина Николаевна
RU2563252C1
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ 2021
  • Данилевич Владимир Владимирович
  • Герасимов Евгений Юрьевич
  • Надеина Ксения Александровна
  • Корякина Галина Ивановна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2759437C1
СПОСОБ ПОЛУЧЕНИЯ КАРКАСНЫХ СТРУКТУР НА ОСНОВЕ SiO2-Al2O3 2021
  • Пягай Игорь Николаевич
  • Шайдулина Алина Азатовна
  • Коноплин Ростислав Робертович
  • Артюшевский Дмитрий Игоревич
RU2761822C1
Носитель для катализаторов на основе оксида алюминия и способ его приготовления 2016
  • Исупова Любовь Александровна
  • Сутормина Елена Федоровна
  • Марчук Андрей Анатольевич
  • Кругляков Василий Юрьевич
  • Куликовская Нина Александровна
  • Детцель Анна Ильинична
  • Перегоедов Сергей Иванович
  • Пинаева Лариса Геннадьевна
RU2623436C1
Каталитический элемент регулярной сотовой структуры для гетерогенных реакций 2021
  • Абрамов Анатолий Кузьмич
  • Мызь Артем Леонидович
RU2756660C1
Катализатор защитного слоя для переработки тяжелого нефтяного сырья 2018
  • Пархомчук Екатерина Васильевна
  • Лысиков Антон Игоревич
  • Семейкина Виктория Сергеевна
  • Полухин Александр Валерьевич
  • Сашкина Ксения Александровна
  • Федотов Константин Владимирович
  • Клейменов Андрей Владимирович
RU2698191C1
Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля 2018
  • Морозова Янина Владиславовна
  • Логинова Анна Николаевна
  • Архипова Ирина Александровна
  • Фадеев Вадим Владимирович
RU2663901C1
Способ приготовления катализатора второй стадии гидрокрекинга 2021
  • Климов Олег Владимирович
  • Казаков Максим Олегович
  • Смирнова Марина Юрьевна
  • Надеина Ксения Александровна
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2779443C1
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2023
  • Ламберов Александр Адольфович
  • Егорова Светлана Робертовна
RU2811917C1
Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления 2018
  • Пархомчук Екатерина Васильевна
  • Лысиков Антон Игоревич
  • Семейкина Виктория Сергеевна
  • Полухин Александр Валерьевич
  • Сашкина Ксения Александровна
  • Федотов Константин Владимирович
  • Клейменов Андрей Владимирович
RU2699354C1

Реферат патента 2023 года СПОСОБ ПОЛУЧЕНИЯ БИПОРИСТОГО ГРАНУЛИРОВАННОГО ОКСИДА АЛЮМИНИЯ

Изобретение относится к области химической технологии и может найти применение в производстве сорбентов и катализаторов для различных отраслей химической и нефтехимической промышленности. Предложен способ получения бипористого гранулированного оксида алюминия, отличающийся тем, что способ включает мокрое смешение предшественника оксида алюминия - псевдобемита с водой, содержащей азотную кислоту, с последующим получением однородной пластичной массы, формовкой методом экструзии и термической обработкой, на стадии смешения дополнительно вводится древесная мука в количестве 2-8 мас.% от массы предшественника оксида алюминия, и полученный оксид алюминия характеризуется удельной поверхностью более 130 м2/г, объёмом пор более 0,45 см3/г, а также бипористой структурой, представленной порами размером 2-30 нм и от 30 нм до 5 мкм. Технический результат – предложенный способ позволяет технологически просто получить оксид алюминия с бипористой системой, пригодный для использования в сорбции, а также в качестве носителя для получения на его основе каталитических материалов. 1 табл., 4 пр.

Формула изобретения RU 2 789 338 C1

Способ получения бипористого гранулированного оксида алюминия, отличающийся тем, что способ включает мокрое смешение предшественника оксида алюминия - псевдобемита с водой, содержащей азотную кислоту, с последующим получением однородной пластичной массы, формовкой методом экструзии и термической обработкой, на стадии смешения дополнительно вводится древесная мука в количестве 2-8 мас.% от массы предшественника оксида алюминия, и полученный оксид алюминия характеризуется удельной поверхностью более 130 м2/г, объёмом пор более 0,45 см3/г, а также бипористой структурой, представленной порами размером 2-30 нм и от 30 нм до 5 мкм.

Документы, цитированные в отчете о поиске Патент 2023 года RU2789338C1

Устройство для стимуляции молочной продуктивности коров 1986
  • Быховский Арон Израилевич
  • Тульчинский Леонид Наумович
  • Науменко Владимир Васильевич
  • Деревянко Иван Дмитриевич
  • Гринченко Геннадий Михайлович
  • Дубров Александр Николаевич
SU1457936A1
Марченко И.Н
Синтез и коллоидно-химические свойства гидрозолей бемита и смешанных дисперсий AlOOH-ZnO: Дисс
канд
техн
наук
М., 2017
Способ получения борнеола из пихтового или т.п. масел 1921
  • Филипович Л.В.
SU114A1
Носитель на основе оксида алюминия для катализаторов переработки углеводородного сырья и способ его приготовления 2018
  • Воробьев Юрий Константинович
  • Синкевич Павел Леонидович
  • Степанов Виктор Георгиевич
RU2685263C1
НОСИТЕЛЬ КАТАЛИЗАТОРА НА МЕТАЛЛИЧЕСКОЙ ОСНОВЕ (ВАРИАНТЫ) И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) 2005
  • Тихов Сергей Федорович
  • Усольцев Владимир Валерьевич
  • Павлова Светлана Николаевна
  • Снегуренко Ольга Ивановна
  • Садыков Владислав Александрович
  • Ломовский Олег Иванович
  • Голубкова Галина Васильевна
RU2281164C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ ПСЕВДОБЕМИТНОЙ СТРУКТУРЫ И ГАММА-ОКСИДА АЛЮМИНИЯ НА ЕГО ОСНОВЕ 2003
  • Иванова А.С.
  • Карасюк Н.В.
  • Кругляков В.Ю.
  • Танашев Ю.Ю.
  • Мороз Э.М.
  • Золотарский И.А.
  • Пармон В.Н.
RU2234460C1
US 2014174983 A1, 26.06.2014.

RU 2 789 338 C1

Авторы

Мамонтов Григорий Владимирович

Даты

2023-02-01Публикация

2021-12-27Подача