Изобретение относится к области химической технологии и может найти применение в производстве сорбентов и катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения гранулированного оксида алюминия, характеризующегося бипористой структурой.
Оксид алюминия и материалы на его основе находят широкое применение в различных отраслях, включая сорбцию различных веществ как из газовой, так и из жидкой фазы, гетерогенный катализ для различных окислительно-восстановительных и кислотно-основных каталитических процессов, протекающих как в газовой, так и в жидкой фазе. В большинстве областей использования оксид алюминия применяется в виде гранул цилиндрической или сферической формы диаметром 1-5 мм, поскольку это технологически более удобно. Однако при использовании гранулированных сорбентов и катализаторов возникают сложности, связанные с диффузионными затруднениями проникновения реагентов внутрь гранул и отвода продуктов из гранулы. Это связано с особенностями диффузии молекул как в газообразной, так и в жидкой фазе внутри пор нанометрового размера. Наличие диффузионных затруднений приводит к тому, что только поверхность гранул функционирует в сорбционном или каталитическом процессе, в то время как объем гранул оказывается не вовлеченным в процессы, что снижает общую эффективность использования гранул материала. Решением может являться создание гранулированного оксида алюминия с бипористой структурой, то есть чтобы в структуре помимо пор нанометрового размера присутствовали поры размером от 50 нм до нескольких микрометров, в которых диффузионные затруднения незначительны.
Известен носитель катализатора, включающий оксид алюминия и алюминий (патент РФ 2257261, B01J 21/04, опубл. 27.07.2005), в котором доля пор размером более 0,1 мкм в общем объеме открытых пор, равном 0,10-0,88 см3/г носителя, составляет, об.%: 10,0-88,5. Способ приготовления носителя включает формирование заготовки из порошка алюминия и неорганической добавки, окисление в режиме гидротермальной обработки при 200 °С 2 часа и последующее спекание при 700 °С 2 часа. Технический результат - получение носителя с удельной поверхностью от 28,6 до 135,7 м2/г, механической прочностью 1,4 - 10,1 МПа. Не смотря на относительно высокие прочностные характеристики и большой вклад макропор в структуру образца, метод является затратным, предполагает использование металлического алюминия, а получаемый продукт характеризуется невысокими значениями удельной поверхности.
Известен способ получения широкопористого оксида алюминия (патент РФ 2482061, С01F7/02, опубл. 20.05.2013], включающий осаждение раствора азотнокислого алюминия водным раствором аммиака при рН 7 и температуре 70 °С с последующим «старением» при указанных условиях в течение 3-5 ч., включающий стадию формования гранул гидроксида алюминия путем смешения одной части высушенного на распылительной сушилке осадка с двумя частями влажного осадка гидроксида при влажности формуемой пасты 58-66 % с последующими стадиями сушки и термической обработки. Получаемый оксид алюминия представляет собой γ-Al2O3, характеризующегося мономодальным распределением пор по размерам, величиной удельной поверхности, равной 340-370 м2/г, объемом пор - 0,82-1,09 см-/г, средний диаметр которых составляет 9,2-11 нм. Недостатком является то, что несмотря на высокие значения удельной поверхности, материал характеризуется только одним типом пор.
Наиболее близким является оксидный носитель, описанный в указанном патенте (патент РФ 2281164, B01J32/00, опубл. 10.08.2006). Носитель на металлической основе получают путем формирования металлического порошка, содержащего алюминий и другие порошкообразные компоненты, компоненты прокаливают при температуре спекания твердой фазы 1100 °С в течение 4 часов, полученную смесь подвергают мехактивации и помещают в пресс-форму, доступную для паров воды, и подвергают гидротермальной обработке, извлекают из пресс-формы сформованный продукт, который затем сушат и прокаливают. Недостатком метода является большое количество операций, в том числе энергетических затратных, таких как мехактивация и высокотемпературная обработка, а получаемый продукт характеризуется невысокими значениями удельной поверхности.
Технической задачей изобретения является создание технологически простого способа получения гранулированного оксида алюминия с бипористой структурой.
Цель достигается тем, что оксид алюминия получают путем интенсивного смешения псевдобемита, как предшественника оксида алюминия, с водой, содержащей небольшое количество азотной кислоты, а также с древесной мукой в количестве 2-8 масс.% от массы предшественника оксида алюминия, далее получаемая однородная пластичная масса подвергается формовке методом экструзии через фильеру диаметром 3 мм и термической обработке при 700 °С. В отличии от вышеуказанных примеров металлический алюминий не используется, соответственно исключается энергозатратная стадия гидротермальной обработки, протекающая при повышенных температурах и повышенном давлении и требующая использования специального автоклавного оборудования. Получаемый гранулированный оксид алюминия имеет удельную поверхность более 130 м2/г, объем пор более 0,45 см3/г, при этом оксид алюминия имеет два типа пор: размером 2-30 нм и размером от 30 нм до 5 мкм. Технический результат заключается в простом способе получения оксида алюминия с бипористой системой, пригодного для использования в сорбции, а также в качестве носителя для получения на его основе каталитических материалов.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Для приготовления оксида алюминия смешивается в течение 30 минут 100 г всевдобемита, 2 г древесной муки, предварительной просеянной через сито 125 мкм, 20 г вода и 1 мл раствора азотной кислоты. Полученная вязкая смесь подвергается формовке методом экструзии с использованием фильеры диаметром 3 мм. Полученный жгут нарезается на цилиндрические гранулы длиной около 5 мм. Гранулы подвергаются сушке при 120 °С в течение 4 часов, а затем прокалке при 700 °С 4 часа. Полученный образец оксида алюминия характеризуется удельной поверхностью более 130 м2/г, объёмом пор более 0,45 см3/г, а также бипористой структурой, представленной порами размером 2-30 нм и от 30 нм до 5 мкм.
Пример 2. Аналогичен примеру 1. Отличие состоит в том, что используют 3 г древесной муки.
Пример 3. Аналогичен примеру 1. Отличие состоит в том, что используют 5 г древесной муки.
Пример 4. Аналогичен примеру 1. Отличие состоит в том, что используют 8 г древесной муки.
В таблице 1 представлены сравнительные характеристики образцов предложенного бипористого гранулированного оксида алюминия, а также образца Al2O3, полученного без использования добавки древесной муки, и образца прототипа. Из представленных данных видно, что образцы по примерам 1-4 характеризуются достаточно высокими значениями удельной поверхностью 133-150 м2/г, объемом пор 0,455-0,566 см3/г, наличием пор размером более 100 нм общим объёмом 0,108-0,218 см3/г. Гранулы оксида алюминия характеризуются прочностью на раздавливание 5,8-9,7 Мпа, что является достаточной для эксплуатации гранул в реакторах со стационарным слоем сорбента или катализатора. Образец Al2O3, полученный без использования добавки древесной муки, характеризуется сопоставимой величиной удельной поверхности, однако объем пор размером более 100 нм значительно ниже - 0,045 см3/г. Таким образом, получение бипористого оксида алюминия с характеристиками не ниже, чем у прототипа, достигается только при использовании добавки древесной муки.
Таблица 1. Характеристики образцов оксида алюминия
Способ является технически простым, добавление древесной муки позволяет получить оксид алюминия с бипористой структурой, включающей поры размером 2-30 нм и размером от 30 нм до 5 мкм, но при этом не требует усложнения технологических операций или добавления новых операций.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРОВ ДЕМЕТАЛЛИЗАЦИИ НЕФТЯНЫХ ФРАКЦИЙ | 2014 |
|
RU2563252C1 |
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ | 2021 |
|
RU2759437C1 |
СПОСОБ ПОЛУЧЕНИЯ КАРКАСНЫХ СТРУКТУР НА ОСНОВЕ SiO2-Al2O3 | 2021 |
|
RU2761822C1 |
Носитель для катализаторов на основе оксида алюминия и способ его приготовления | 2016 |
|
RU2623436C1 |
Каталитический элемент регулярной сотовой структуры для гетерогенных реакций | 2021 |
|
RU2756660C1 |
Катализатор защитного слоя для переработки тяжелого нефтяного сырья | 2018 |
|
RU2698191C1 |
Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля | 2018 |
|
RU2663901C1 |
Способ приготовления катализатора второй стадии гидрокрекинга | 2021 |
|
RU2779443C1 |
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2023 |
|
RU2811917C1 |
Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления | 2018 |
|
RU2699354C1 |
Изобретение относится к области химической технологии и может найти применение в производстве сорбентов и катализаторов для различных отраслей химической и нефтехимической промышленности. Предложен способ получения бипористого гранулированного оксида алюминия, отличающийся тем, что способ включает мокрое смешение предшественника оксида алюминия - псевдобемита с водой, содержащей азотную кислоту, с последующим получением однородной пластичной массы, формовкой методом экструзии и термической обработкой, на стадии смешения дополнительно вводится древесная мука в количестве 2-8 мас.% от массы предшественника оксида алюминия, и полученный оксид алюминия характеризуется удельной поверхностью более 130 м2/г, объёмом пор более 0,45 см3/г, а также бипористой структурой, представленной порами размером 2-30 нм и от 30 нм до 5 мкм. Технический результат – предложенный способ позволяет технологически просто получить оксид алюминия с бипористой системой, пригодный для использования в сорбции, а также в качестве носителя для получения на его основе каталитических материалов. 1 табл., 4 пр.
Способ получения бипористого гранулированного оксида алюминия, отличающийся тем, что способ включает мокрое смешение предшественника оксида алюминия - псевдобемита с водой, содержащей азотную кислоту, с последующим получением однородной пластичной массы, формовкой методом экструзии и термической обработкой, на стадии смешения дополнительно вводится древесная мука в количестве 2-8 мас.% от массы предшественника оксида алюминия, и полученный оксид алюминия характеризуется удельной поверхностью более 130 м2/г, объёмом пор более 0,45 см3/г, а также бипористой структурой, представленной порами размером 2-30 нм и от 30 нм до 5 мкм.
Устройство для стимуляции молочной продуктивности коров | 1986 |
|
SU1457936A1 |
Марченко И.Н | |||
Синтез и коллоидно-химические свойства гидрозолей бемита и смешанных дисперсий AlOOH-ZnO: Дисс | |||
канд | |||
техн | |||
наук | |||
М., 2017 | |||
Способ получения борнеола из пихтового или т.п. масел | 1921 |
|
SU114A1 |
Носитель на основе оксида алюминия для катализаторов переработки углеводородного сырья и способ его приготовления | 2018 |
|
RU2685263C1 |
НОСИТЕЛЬ КАТАЛИЗАТОРА НА МЕТАЛЛИЧЕСКОЙ ОСНОВЕ (ВАРИАНТЫ) И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) | 2005 |
|
RU2281164C1 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ ПСЕВДОБЕМИТНОЙ СТРУКТУРЫ И ГАММА-ОКСИДА АЛЮМИНИЯ НА ЕГО ОСНОВЕ | 2003 |
|
RU2234460C1 |
US 2014174983 A1, 26.06.2014. |
Авторы
Даты
2023-02-01—Публикация
2021-12-27—Подача