Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации для аддитивного производства Российский патент 2023 года по МПК C04B35/486 B82Y40/00 

Описание патента на изобретение RU2795866C1

Изобретение относится к области получения изделий из высокоплотной керамики на основе диоксида циркония сложной формы при помощи аддитивного производства методом цифровой обработки светом (Digital Light Processing, DLP). Прочные керамические материалы на основе диоксида циркония тетрагональной модификации обладают высокой стойкостью к воздействию химических и биологических сред, высокими механическими свойствами, что позволяет их использовать в качестве износостойких изделий, различного режущего инструмента, в том числе, медицинских скальпелей, керамических подшипников, а также имплантатов для замещения костных дефектов. Возможность получения сложных геометрических форм конечного продукта значительно расширяет область применения данных материалов.

Основным недостатком технологии керамики на основе диоксида циркония является высокая температура спекания 1700-1750°С [Андрианов, Н.Т., Балкевич, В.Л., Беляков, А.В., Власов, А.С., Гузман, И.Я., Лукин, Е.С., … & Скидан, Б.С. Химическая технология керамики: учеб. пособие для вузов / Под ред. ИЯ Гузмана // М.: ООО Риф «Стройматериалы», 2012. - 496 с. - 2012].

Получить прочные керамические материалы на основе ZrO2 при одновременном снижении температуры спекания возможно за счет использования специальных методов, например, горячего или изостатического прессования. Однако данные методы предполагают использование сложного дорогостоящего оборудования и не могут быть использованы в аддитивном производстве для получения объектов сложной формы методом цифровой обработки светом (DLP).

Так, известны керамические материалы тетрагональной модификации:

1. [М. Trunec and K. Масa Compaction and Pressureless Sintering of Zirconia Nanoparticles // J. Am. Ceram. Soc., 90 [9] 2735-2740 (2007)] с температурой спекания около 1100°С и относительной плотностью 99,1%. Низкая температура спекания и достижение относительной плотности 99,1% является следствием использования нанодисперсных порошков с высокой площадью удельной поверхности 123 м3 /г. Недостатком данного материала является использование дорогостоящего оборудования для изостатического уплотнения при прессовании образцов, а также относительно низкая плотность материала, что приводит к снижению прочности.

2. [Fu L. et al. Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS //Journal of the European Ceramic Society. – 2016. – Т. 36. – №. 14. – С. 3487-3494.] с температурой спекания 1050–1230°С, состоящие из 35 мол. % ZrO2 и 65 мол. % SiO2. Полученные материалы относятся к прозрачной керамике и получены искровым плазменным спеканием под давлением от 30 до 70 МПа. Конечная прочность на изгиб составляет от 227 до 268 МПа.

Наиболее близким по техническому решению и достигаемому эффекту является керамический материал тетрагональной модификации [патент №2572101 «Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации»] с температурой спекания около 1150°С. Низкая температура спекания, достижение относительной плотности (открытая пористость не более 0,01%) и прочности 350 МПа при изгибе достигается за счет использования ультрадисперсных порошков 150 м2/г и применения добавки - силиката натрия в количестве 2-5 масс. %. Недостатком данного материала является низкая прочность материала. Это является следствием содержания в материале аморфной стеклофазы низкой прочности. А также керамический материал тетрагональной модификации [патент №2665734 «Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации»] с более высокой температурой спекания 1300-1350°С, и, следовательно, менее активного к спеканию, однако обладающего более высокими механическими свойствами прочности на 3-х точечный изгиб 500 МПа.

Для получения деталей сложной геометрии, состоящих из ZrO2 керамики, необходимо учесть ряд технологических параметров. На сегодняшний день 3D-печать керамическими материалами уже активно применяется, однако требует высокотехнологичного дорогостоящего оборудования, позволяющего работать с вязкими керамическими суспензиями, что ограничивает возможность использования данной технологии. Снижение вязкости позволяет использовать данные суспензии в DLP технологии, однако недостаточное заполнение частиц порошка не обеспечивает допустимую плотность сырца, что в конечном итоге приводит к образованию трещин и деформаций у спеченного продукта. В случае использования высокоактивной керамики, наблюдается эффект припекания при низких температурах пиролиза органического связующего, что позволяет сохранить структуру без деформаций и трещин.

Технический результат изобретения заключается в создании материала на основе тетрагональной модификации диоксида циркония, спекающегося при низкой температуре 1150°С и характеризующегося высокими механическими характеристиками: прочностью при изгибе не менее 515 МПа.

Технический результат достигается тем, что керамический материал с низкой температурой спекания на основе тетрагонального диоксида циркония, содержит добавку оксида кремния, способствующую спеканию при температуре 1150°С, и упрочняющую добавку Al2O3 при следующих соотношениях компонентов в материале, масс. %: тетрагональный диоксид циркония (содержание оксида иттрия 3-9 мол. %) – 90-96 масс. %, добавка оксида алюминия 2-5 масс. % и добавка оксида кремния в количестве 2-5 масс. %. Полученный материал характеризуется прочностью при изгибе не менее 515 МПа, равномерной однородной структурой с размером кристаллов около 50-70 нм и открытой пористостью не более 4%.

Керамический материал указанного состава неизвестен. В результате воздействия добавки SiO2 в решетке кристаллического материала ZrO2 появляются многочисленные дефекты, способствующие интенсификации спекания за счет внедрения катиона Si4+ (ионный радиус 42 пм). Высокая прочность в 515 МПа достигается мелким размером зерна 50-70 нм. При увеличении температуры происходит рост зерна и уплотнение структуры, эти два процесса компенсируют друг друга, таким образом, показания прочности на изгиб не меняются до 1450°С. При достижении 1450°С открытая пористость составляла не более 0,01%, а прочность керамики на изгиб выросла до 800-930 МПа. При температурах спекания более 1450°С происходит дальнейший рост кристаллов, без увеличения плотности, что приводит к снижению прочности. При температуре 1100°С падение прочности происходит вследствие увеличения пористости (открытая пористость 26%), однако материал по-прежнему имеет высокую прочность на изгиб 251 МПа. При содержании оксида иттрия менее 2 мол. % образуется моноклинная модификация, а при более 9 мол. % кубическая модификация, содержание которых также снижает прочность материала. За счет высокой активности к спеканию данный керамический порошок не требует высокого заполнения при 3D-печати, что дает возможность его использования с применением бюджетного DLP метода печати.

Пример. Керамику получали из нанодисперсных порошков состава 93 масс.% ZrO2 (диоксид циркония содержал 9 мол.% оксида иттрия) 2 масс.% Al2O3 – 5 масс.% SiO2, удельная поверхность порошков была не менее 55 м2/г. Для получения образцов, порошок прессовали образцы в виде балочек размером 30×3×3 мм. Полученные образцы спекали при температуре 1150°С. В результате получали керамический материал, состоящий из 100% тетрагональной фазы. Материал характеризовался однородной мелкокристаллической структурой с размером кристаллов 50–70 нм, открытой пористостью не более 4%, прочностью при изгибе 515 МПа.

Были изготовлены образцы керамики, имеющие составы в пределах заявленных, и определены их свойства в сравнении с прототипом.

Полученные результаты сведены в таблицу.

Обра-зец Содержание
Y2O3 по отношению к ZrO2,
мол.%
Содержа-
ние
диоксида циркония,
масс.%
Содержа-
ние
оксида алюминия,
масс.%
Содержа-ние
оксида кремния,
масс.%
Темпера-тура спекания,
°С
Размер кристал-лов, нм Прочность
при изгибе,
МПа
Открытая пористость,
%
Примечание
1 9 90 5 5 1250 50-200 250 Не более 5 2 3 96 2 2 1150 50-70 515 Не более 4 3 6 93 2 5 1250 50-100 320 Не более 1 4 (прототип) - 90 5 5 1300 - 95 40 трещ. 5 2 93 2 5 1450 100-300 300 4

Похожие патенты RU2795866C1

название год авторы номер документа
Керамический материал системы диоксида циркония-оксида алюминия-оксида кремния с пониженной температурой спекания 2021
  • Баринов Сергей Миронович
  • Оболкина Татьяна Олеговна
  • Гольдберг Маргарита Александровна
  • Смирнов Сергей Валерьевич
RU2795518C1
Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации 2017
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
  • Оболкина Татьяна Олеговна
  • Антонова Ольга Станиславовна
  • Кочанов Герман Петрович
  • Баринов Сергей Миронович
RU2665734C1
Керамический материал с низкой температурой спекания на основе системы диоксида циркония - оксида алюминия - оксида кремния 2019
  • Баринов Сергей Миронович
  • Оболкина Татьяна Олеговна
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
  • Гольдберг Маргарита Александровна
RU2710341C1
КЕРАМИЧЕСКИЙ МАТЕРИАЛ С НИЗКОЙ ТЕМПЕРАТУРОЙ СПЕКАНИЯ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ТЕТРАГОНАЛЬНОЙ МОДИФИКАЦИИ 2014
  • Баринов Сергей Миронович
  • Антонова Ольга Станиславовна
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
  • Крылов Андрей Игоревич
  • Арсентьева Мария Петровна
RU2572101C1
Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации 2017
  • Баринов Сергей Миронович
  • Гольдберг Маргарита Александровна
  • Кочанов Герман Петрович
  • Крылов Андрей Игоревич
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
RU2675391C1
КОМПОЗИЦИОННЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2012
  • Шемякина Ирина Владимировна
  • Аронов Анатолий Маркович
  • Медведко Олег Викторович
  • Семанцова Екатерина Станиславовна
RU2529540C2
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2012
  • Кораблева Елена Алексеевна
  • Якушкина Валентина Семеновна
  • Майзик Марина Александровна
  • Осипова Мария Евгеньевна
  • Русин Михаил Юрьевич
  • Саванина Надежда Николаевна
RU2513973C1
КЕРАМИЧЕСКИЙ МАТЕРИАЛ С НИЗКОЙ ТЕМПЕРАТУРОЙ СПЕКАНИЯ НА ОСНОВЕ КУБИЧЕСКОГО ДИОКСИДА ЦИРКОНИЯ 2014
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
  • Крылов Андрей Игоревич
  • Баринов Сергей Миронович
RU2570694C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОЙ КОМПОЗИЦИОННОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ, АЛЮМИНИЯ И КРЕМНИЯ 2018
  • Дмитриевский Александр Александрович
  • Жигачева Дарья Геннадиевна
  • Жигачев Андрей Олегович
  • Тюрин Александр Иванович
  • Васюков Владимир Михайлович
RU2701765C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОЧНОЙ КЕРАМИКИ 2004
  • Мельников Александр Григорьевич
  • Савченко Николай Леонидович
  • Саблина Татьяна Юрьевна
  • Кульков Сергей Николаевич
RU2286316C2

Реферат патента 2023 года Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации для аддитивного производства

Изобретение относится к области получения изделий из высокоплотной керамики на основе диоксида циркония сложной формы при помощи аддитивного производства методом цифровой обработки светом (Digital Light Processing, DLP). Разработанные материалы могут быть использованы для получения зубных имплантов, костных структур, высокотемпературных деталей машин и в электронике. Керамический материал содержит тетрагональный диоксид циркония, стабилизированный оксидом иттрия, добавки оксида кремния и оксида алюминия при следующих соотношениях компонентов в материале, масс. %: оксид кремния - 2-5, тетрагональный диоксид циркония (содержание оксида иттрия 3-9 мол. %) – 90-96, оксид алюминия – 2-5. Полученный материал характеризуется прочностью при изгибе не менее 515 МПа при спекании на 1150°С, не менее 800 МПа при спекании при на 1450°С, равномерной однородной структурой с размером кристаллов 50-70 нм при спекании на 1150°С, 50-100 нм при спекании на 1250°С, 100-300 нм при спекании на 1450°С и открытой пористостью не более 1%. Технический результат изобретения - адаптирование керамических порошков для получения керамических объектов сложной формы высокой прочности, снижение температуры спекания. 1 табл., 1 пр.

Формула изобретения RU 2 795 866 C1

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации, отличающийся тем, что содержит добавки оксида кремния и оксида алюминия при следующих соотношениях компонентов в материале, масс. %:

добавка оксид кремния 2-5 тетрагональный диоксид циркония (содержание оксида иттрия 3-9 мол. %) 90-96 оксид алюминия 2-5,

полученный материал характеризуется прочностью при изгибе не менее 515 МПа при спекании на 1150°С, не менее 800 МПа при спекании при на 1450°С, равномерной однородной структурой с размером кристаллов 50-70 нм при спекании на 1150°С, при спекании на 1250°С 50-100 нм, при спекании на 1450°С 100-300 нм и открытой пористостью не более 1 %.

Документы, цитированные в отчете о поиске Патент 2023 года RU2795866C1

Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОЙ КОМПОЗИЦИОННОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ, АЛЮМИНИЯ И КРЕМНИЯ 2018
  • Дмитриевский Александр Александрович
  • Жигачева Дарья Геннадиевна
  • Жигачев Андрей Олегович
  • Тюрин Александр Иванович
  • Васюков Владимир Михайлович
RU2701765C1
КЕРАМИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Подзорова Людмила Ивановна
  • Ильичёва Алла Александровна
  • Кутузова Валерия Евгеньевна
  • Михайлина Нина Алесандровна
  • Пенькова Ольга Ивановна
  • Сиротинкин Владимир Петрович
RU2744546C1
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ СЛОЖНОЙ КОНФИГУРАЦИИ 1991
  • Дабижа Александр Аксентьевич
RU2021229C1
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ДЛЯ РЕСТАВРАЦИОННОЙ СТОМАТОЛОГИИ 2013
  • Морозова Людмила Викторовна
  • Калинина Марина Владимировна
  • Ковалько Надежда Юрьевна
  • Шилова Ольга Алексеевна
RU2536593C1
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2012
  • Кораблева Елена Алексеевна
  • Якушкина Валентина Семеновна
  • Майзик Марина Александровна
  • Осипова Мария Евгеньевна
  • Русин Михаил Юрьевич
  • Саванина Надежда Николаевна
RU2513973C1
КЕРАМИЧЕСКИЙ МАТЕРИАЛ С НИЗКОЙ ТЕМПЕРАТУРОЙ СПЕКАНИЯ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ТЕТРАГОНАЛЬНОЙ МОДИФИКАЦИИ 2014
  • Баринов Сергей Миронович
  • Антонова Ольга Станиславовна
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
  • Крылов Андрей Игоревич
  • Арсентьева Мария Петровна
RU2572101C1

RU 2 795 866 C1

Авторы

Смирнов Сергей Валерьевич

Оболкина Татьяна Олеговна

Гольдберг Маргарита Александровна

Баринов Сергей Миронович

Антонова Ольга Станиславовна

Даты

2023-05-12Публикация

2022-03-03Подача