Изобретение относится к биотехнологии, конкретно, к способу ферментативной переработки муки кормовой из рыбы и получению питательной основы с заданными параметрами, и может быть использовано в составе селективной питательной среды, предназначенной для выявления и дифференциации бактерий родов Proteus, Morganella, Providencia при санитарно-бактериологических исследованиях.
Мука кормовая из рыбы ГОСТ 2116-2000 - это один из ценнейших источников полноценного белка, жирных кислот, витаминов A, D и группы В, кальция, магния, фосфора, йода и селена. Она в среднем содержит: сырого протеина - 60-75%, жира - 6-14%, влаги - 4-12% и золы - 14-19% и отличается от другого белкового сырья более высоким содержанием кальция - до 13% и фосфора - до 5,5%. Вместе с тем аминокислотный состав белка рыбной муки достаточно постоянен и характеризуется высоким содержанием глутаминовой (12,7-14,6%) и аспарагиновой (9,1-11,0%) кислот, а также глицина (6,7-7,2%), аланина (6,3-6,5%), лейцина (7,2-8,3%) и лизина, (7,3-7,5%); содержание других аминокислот составляет 3-5%. Рыбная мука содержит и определенное количество витаминов: пантотеновая кислота - до 3 мг%; рибофлавин - до 0,8 мг%; тиамин - до 13 мг%; холин - до 440 мг%. Таким образом, она является полноценным сырьем для получения белковых гидролизатов
В настоящее время широко используется панкреатический гидролизат рыбной муки (ПГРМ) в качестве белковой основы при производстве питательных сред для клинической и санитарной микробиологии. ПГРМ получают путем гидролиза кормовой рыбной муки с применением поджелудочной железы и последующим осаждением высокомолекулярных белковых молекул в кислой и щелочной зонах рН. При этих операциях удаляются высокомолекулярные белки.
В соответствии с промышленным регламентом муку кормовую из рыбы загружают в реактор, добавляют воду питьевую и нагревают гидролизуемую смесь до температуры (49±1)°С, корректируют величину рН до значения 8,0±0,2 раствором едкого натра с массовой долей 40%, затем при работающей мешалке вносят измельченную поджелудочную железу. Процесс гидролиза составляет 6 ч, в течение которого корректируют рН гидролизуемой смеси до значения 8,0±0,2.
Прогидролизованную смесь осветляют сначала в кислой зоне, откорректированной концентрированной соляной кислотой до рН (3,9±0,3). Гидролизат нагревают до 100°С и выдерживают в течение 15 мин. Затем охлаждают до температуры 20-40°С и оставляют для отстаивания в течение 12-18 ч. Декантируют надосадочную жидкость, фильтруют через бельтинг. Осветление гидролизата в щелочной среде проводят при рН (8,1±0,1), нагревании до 100°С и выдерживании в течение 15 мин. Гидролизат охлаждают до температуры (90±5)°С. Фильтрацию проводят на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм. В результате получают жидкий опалесцирующий гидролизат светло-коричневого цвета с содержанием аминного азот не менее 0,28%, сухого остатка не менее 8,0%.
Средние значения процентного содержания аминокислот панкреатического гидролизата рыбной муки, определенные на жидкостном хроматографе модель L-8800 фирмы «Hitachi» Япония, представлены в таблице 1.
Таким образом, ПГРМ удовлетворяет требованиям по биологической ценности, доступности, относительной стандартности и к тому же не является пищевым сырьем.
Наиболее близким способом получения белковой основы для производства селективной питательной среды с маннитом, желчью и полимиксином для выявления бактерий родов Proteus, Morganella, Providencia сухой является способ получения сухого панкреатического гидролизата рыбной муки по ТУ 20.59.52-017-78095326-2019
Недостатком способа получения панкреатического гидролизата рыбной муки является:
- высокое содержание кальция и магния в гидролизате (при определении комплексонометрическим методом определения, основанном на получении прочного растворимого комплексного соединения с индикатором - мурексидом содержание кальция 0,65%, магния - 0,32%);
- использование гидролизата в многокомпонентных жидких питательных средах, содержащих фосфаты, приводит к ложноположительной интерпретации результатов исследований, ввиду их диффузного помутнения.
Техническим результатом предлагаемого изобретения является создание сухой питательной белковой основы, обеспечивающей прозрачность жидких питательных сред и хороший рост микроорганизмов семейства Enterobacteriaceae.
Технический результат достигается тем, что предлагается способ получения белковой основы, включающий внесение в реактор требуемого объема гидролизата, полученного по ТУ 20.59.52-017-78095326-2019 с содержанием сухих веществ не менее 8%. Затем в реактор перед этапом высушивания вносят расчетное количество калия фосфорнокислого двузамещенного, (из расчета на каждые 10 г сухого ПГРМ 0,8 г калия фосфорнокислого двузамещенного), смесь нагревают до температуры 100°С, выдерживают при этой температуре в течение 15-20 мин, образовавшийся при кипячении комплекс высокомолекулярных белков и пептидов с катионами кальция и магния, фильтруют на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм, затем гидролизат высушивают на сушильной установке ФМУ-П при следующих параметрах рабочего режима: температура воздуха на входе в сушильную камеру tBX°С - 124-132; температура воздуха на выходе из сушильной камеры tВЫХ°С -102-108.
Отличием предлагаемого способа получения сухого ПГРМ является внесение калия фосфорнокислого двузамещенного (K2HPO4) необходимого для осаждения высокомолекулярных белков и пептидов и уменьшения минерализации катионами магния и кальция не менее чем в 2-4 раза соответственно, и используемого в производстве питательных сред с повышенными требованиями к показателю прозрачности.
Технология процесса состоит из нескольких стадий:
1. Жидкий панкреатический гидролизат рыбной муки загружают в реактор.
2. Рассчитывают необходимое количество калия фосфорнокислого двузамещенного (на каждые 10 г сухого ПГРМ необходимо добавить 0,8 г калия фосфорнокислого двузамещенного). Расчет производят по формулам:
С.О. общ - общее содержание сухих веществ, г;
V - объем жидкого гидролизата рыбной муки (500 л);
СО - содержание сухих веществ в ПГРМ в %, определенное методом высушивания до постоянного веса;
10 - коэффициент пересчета,
где X - количество калия фосфорнокислого двузамещенного, г;
С.О. общ - общее содержание сухих веществ, г;
0,8 и 10 коэффициенты пересчета.
3. Расчетное количество калия фосфорнокислого двузамещенного загружают в реактор с ПГРМ. Смесь нагревают до 100°С и выдерживают 15-20 мин.
4. Деминерализованную от катионов кальция и магния питательную основу фильтруют на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм.
5. Высушивание производят на сушильной установке ФМУ-П при следующих параметрах рабочего режима: температура воздуха на входе в сушильную камеру tВХ°С -124-132; температура воздуха на выходе из сушильной камеры tВЫХ°С - 102-108; потоком восходящего воздуха сухую основу собирают в накопительные емкости и выгружают.
6. Определяют физико-химические показатели ПГРМ K2HPO4 для производства селективной питательной среды с маннитом, желчью и полимиксином для выявления бактерий родов Proteus, Morganella, Providencia: внешний вид - однородный, мелкодисперсный порошок светло-желтого цвета; 2%-ный раствор должен быть прозрачным, светло-желтого цвета; рН 6,4-7,4; аминный азот не менее 3,0%; потеря в массе при высушивании, не более 7,0%; хлориды (в пересчете на натрия хлорид) не менее 14%; содержание кальция и магния не более 0,15% соответственно.
Пример 1. Жидкий панкреатический гидролизат рыбной муки, полученный по ТУ20.59.52-017-78095326-2019 с содержанием сухих веществ не менее 8%, объемом 500 л загружают в реактор. Перед этапом сушки вносят расчетное количество калия фосфорнокислого двузамещенного (из расчета на каждые 10 г сухого ПГРМ 0,8 г калия фосфорнокислого двузамещенного) равное 3,2 кг, смесь нагревают до температуры 100°С, выдерживают при этой температуре в течение 15-20 мин, образовавшийся при кипячении комплекс высокомолекулярных белков и пептидов с катионами кальция и магния, фильтруют на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм, затем гидролизат высушивают на сушильной установке ФМУ-П при следующих параметрах рабочего режима: температура воздуха на входе в сушильную камеру tBX°С - 124-132; температура воздуха на выходе из сушильной камеры tВЫХ°С - 102-108.
7. Определяют физико-химические показатели полученной белковой основы: внешний вид - однородный, мелкодисперсный порошок светло-желтого цвета; 2%-ный раствор должен быть прозрачным, светло-желтого цвета; рН 6,4-7,4; аминный азот не менее 3,0%; потеря в массе при высушивании, не более 7,0%; хлориды (в пересчете на натрия хлорид) не менее 14%; содержание кальция и магния не более 0,15% соответственно.
Пример 2.
Жидкий панкреатический гидролизат рыбной муки, полученный по ТУ20.59.52-017-78095326-2019 с содержанием сухих веществ не менее 8%, объемом 300 л загружают в реактор. Перед этапом сушки вносят расчетное количество калия фосфорнокислого двузамещенного (из расчета на каждые 10 г сухого ПГРМ 0,8 г калия фосфорнокислого двузамещенного) равное 1,92 кг, смесь нагревают до температуры 100°С, выдерживают при этой температуре в течение 15-20 мин, образовавшийся при кипячении комплекс высокомолекулярных белков и пептидов с катионами кальция и магния, фильтруют на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм, затем гидролизат высушивают на сушильной установке ФМУ-П при следующих параметрах рабочего режима: температура воздуха на входе в сушильную камеру tвх°С -124-132; температура воздуха на выходе из сушильной камеры tвых°С - 102-108.
Физико-химические показатели полученной белковой основы идентичны примеру 1.
Таким образом, предлагаемый способ позволяет получить белковую основу с заданными параметрами, которая может быть использована в составе селективной питательной среды, предназначенной для выявления и дифференциации бактерий родов Proteus, Morganella, Providencia при санитарно-бактериологических исследованиях, что позволит усовершенствовать методы микробиологического анализа при диагностике инфекционных заболеваний.
название | год | авторы | номер документа |
---|---|---|---|
Селективная питательная среда с маннитом, желчью и полимиксином для выявления бактерий родов Proteus, Morganella, Providencia сухая | 2022 |
|
RU2792438C1 |
ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ СЕЛЕКТИВНОГО НАКОПЛЕНИЯ ЭНТЕРОБАКТЕРИЙ, СУХАЯ (БУЛЬОН МОССЕЛЯ), ВАРИАНТЫ | 2013 |
|
RU2553224C2 |
Питательная среда для выделения Pseudomonas aeruginosa | 2019 |
|
RU2709136C1 |
СУХАЯ ХРОМОГЕННАЯ ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ ОБНАРУЖЕНИЯ КОЛИФОРМНЫХ БАКТЕРИЙ И E.coli (ВАРИАНТЫ) | 2012 |
|
RU2508400C1 |
СУХАЯ ДИФФЕРЕНЦИАЛЬНО-ДИАГНОСТИЧЕСКАЯ ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ ОБНАРУЖЕНИЯ И УЧЕТА E.coli И КОЛИФОРМНЫХ БАКТЕРИЙ | 2012 |
|
RU2508399C1 |
Питательная среда для селективного выявления патогенных маннитположительных стафилококков | 2015 |
|
RU2620965C2 |
Питательная среда для культивирования LeGIoNeLLa рNеUморнILа | 1986 |
|
SU1359297A1 |
ДИФФЕРЕНЦИАЛЬНО-ДИАГНОСТИЧЕСКАЯ СРЕДА ДЛЯ ВЫДЕЛЕНИЯ ЛИСТЕРИЙ | 2001 |
|
RU2223313C2 |
Дифференциально-элективная питательная среда для выделения клебсиелл | 2019 |
|
RU2704854C1 |
ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ КУЛЬТИВИРОВАНИЯ LEGIONELLA PNEUMOPHILA | 1989 |
|
RU1614494C |
Изобретение относится к биотехнологии и может быть использовано при санитарно-бактериологических исследованиях. Способ получения белковой основы для производства селективной питательной среды с маннитом, желчью и полимиксином для выявления бактерий родов Proteus, Morganella, Providencia характеризуется тем, что в реактор загружается требуемый объем жидкого панкреатического гидролизата рыбной муки и калий фосфорнокислый двузамещенный в количестве на 10 г сухого ПГРМ - 0,8 г калия фосфорнокислого двузамещенного, смесь нагревается до температуры 100°С, выдерживается при этой температуре в течение 15-20 мин, образовавшийся при кипячении комплекс высокомолекулярных белков и пептидов с катионами кальция и магния фильтруют на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм, затем гидролизат высушивают на сушильной установке при следующих параметрах рабочего режима: температура воздуха на входе в сушильную камеру tвх °С – 124-132; температура воздуха на выходе из сушильной камеры tвых °С – 102-108. Изобретение обеспечивает прозрачность жидкой питательной среды и хороший рост микроорганизмов семейства Enterobacteriaceae. 2 пр.
Способ получения белковой основы для производства селективной питательной среды с маннитом, желчью и полимиксином для выявления бактерий родов Proteus, Morganella, Providencia, включающий внесение в реактор требуемого объема панкреатического гидролизата рыбной муки, отличающийся тем, что перед этапом высушивания в жидкий гидролизат вносится на 10 г сухого ПГРМ - 0,8 г калия фосфорнокислого двузамещенного, смесь нагревают до температуры 100°С, выдерживают при этой температуре в течение 15-20 мин, образовавшийся при кипячении комплекс высокомолекулярных белков и пептидов с катионами кальция и магния фильтруют на фильтр-прессе через бельтинг при помощи сжатого воздуха при давлении 0,5-1,0 атм, затем гидролизат высушивают на сушильной установке при следующих параметрах рабочего режима: температура воздуха на входе в сушильную камеру tвх °С – 124-132; температура воздуха на выходе из сушильной камеры tвых °С – 102-108.
Способ получения белкового гидролизата из подсолнечного шрота | 1983 |
|
SU1081843A1 |
ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ СЕЛЕКТИВНОГО НАКОПЛЕНИЯ ЭНТЕРОБАКТЕРИЙ, СУХАЯ (БУЛЬОН МОССЕЛЯ), ВАРИАНТЫ | 2013 |
|
RU2553224C2 |
ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ КУЛЬТИВИРОВАНИЯ БАКТЕРИЙ | 2008 |
|
RU2399660C2 |
ШЕПЕЛИН А.П | |||
и др | |||
Изучение диагностической ценности высокоселективных питательных сред для выделения бактерий родов Klebsiella spp | |||
и Proteus spp., Проблемы медицинской микологии, 2020, Т.22, N 4, С.72-76 | |||
Устройство для ориентирования самолетов во время приземления их при плохой видимости | 1933 |
|
SU36224A1 |
ШЕПЕЛИН А.П | |||
Разработка технологии |
Авторы
Даты
2023-06-23—Публикация
2022-08-26—Подача