Способ определения цинка в биологическом материале Российский патент 2023 года по МПК G01N33/48 G01N21/79 G01N30/74 

Описание патента на изобретение RU2808414C1

Изобретение относится к экологии, биологии и токсикологической химии, а именно к способам количественного определения цинка в биологическом материале, и может быть использовано в практике химико-токсикологических, клинических, ветеринарных и экологических лабораторий.

Известен способ определения цинка в цельной крови путем обработки исследуемой пробы 0,5-5,0%-ным водным раствором азотной кислоты при объемном соотношении проба-кислота 1:1, последующего ее подсушивания в два этапа при температуре 110°С и 250°С, озоления при температуре 430°С, обработки полученной золы концентрированной азотной кислотой, выпаривания до состояния влажных солей, введения фонового раствора - 0,5-5,0%-ного раствора азотной кислоты - и определения содержания цинка в полученном растворе с помощью метода атомно-абсорбционной спектрофотометрии (Патент 2184973 Российская Федерация, МПК G01N 33/84 (2000.01) / Способ определения содержания тяжелых металлов в цельной крови / Зайцева Н.В., Уланова Т.С., Плахова Л.В., Суетина Г.Н., Стенно Е.В.; патентообладатель Пермский научно-исследовательский клинический институт детской экопатологии (RU) - №2001114386/14; Заяв. 24.05.2001; Опуб. 10.07.2002 // Описание изобретения к патенту. - 2002).

Недостаток данного способа заключается в том, что атомно-абсорбционная спектрометрия предполагает применение дорогостоящего оборудования и требует определенных условий для работы с открытым огнем и баллонами с горючими газами под давлением, поэтому метод не доступен большинству лабораторий.

Наиболее близкой является методика определения цинка в пробах сточных, подсточных вод и растительной биомассе путем подкисления анализируемого водного раствора объемом 25 мл до рН 2-3, помещения его в делительную воронку, добавления 5 мл ацетатного буферного раствора и 5 мл раствора тиосульфата натрия, встряхивания с малыми порциями раствора дитизона в тетрахлорметане, объединения экстрактов, промывания встряхиванием с двумя порциями по 5 мл промывного раствора, перенесения розового раствора дитизоната цинка в тетрахлорметане в мерную колбу на 25 мл, доведения до метки растворителем, перемешивания и измерения оптической плотности при 538 нм относительно растворителя с использованием спектрофотометра СПЕКС ССП 310 (Петракова, Е.А. Методики определения цинка в пробах сточных, подсточных вод и растительной биомассе / Е.А. Петракова // Вестник Брянского государственного университета. - 2014. - №4. - С. 148-151).

Недостатками данного способа являются недостаточно высокий процент обнаружения цинка, недостаточно высокая точность и чувствительность.

Техническим результатом настоящего изобретения является повышение процента обнаружения, а также увеличение точности и чувствительности определения цинка в биологическом материале при использовании общедоступного в аппаратурном и экономическом отношении способа.

Технический результат достигается тем, что биологический объект измельчают, высушивают, осуществляют минерализацию методом сухого озоления, золу обрабатывают концентрированным раствором нитрата аммония при нагревании, полученные кристаллы растворяют в 0,1М хлороводородной кислоте, фильтруют через обеззоленный фильтр «белая лента», аликвоту приготовленного раствора наносят на линию старта нормально-фазовой пластины ТСХ, процесс хроматографирования осуществляют, используя двухкомпонентную подвижную фазу, которой является смесь растворителей гексан-уксусная кислота в соотношении 7:3 по объему, сорбент с зоны абсорбции тщательно счищают, не допуская потерь сорбента, растворяют в 0,5% растворе аммиака, смесь интенсивно взбалтывают, фильтруют через обеззоленный фильтр «белая лента», к фильтрату добавляют раствор эриохрома черного Т, приготовленный в 0,5% растворе аммиака, далее проводят определение цинка в пробе спектрофотометрическим методом при длине волны 557±2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см.

Изобретение поясняется фигурой.

На фигуре изображены спектры: а - 0,001% раствора эриохрома; б - раствора комплекса эриохром + цинк (концентрация цинка = 0,7 мкг/мл).

Способ осуществляется следующим образом: биологический объект, содержащий цинк, измельчают, высушивают, осуществляют минерализацию методом сухого озоления, золу обрабатывают концентрированным раствором нитрата аммония при нагревании, полученные кристаллы растворяют в 0,1М хлороводородной кислоте, фильтруют через обеззоленный фильтр «белая лента», аликвоту приготовленного раствора наносят на линию старта нормально-фазовой пластины ТСХ, процесс хроматографирования осуществляют, используя двухкомпонентную подвижную фазу, которой является смесь растворителей гексан-уксусная кислота в соотношении 7:3 по объему, сорбент с зоны абсорбции тщательно счищают, не допуская потерь сорбента, растворяют в 0,5% растворе аммиака, смесь интенсивно взбалтывают, фильтруют через обеззоленный фильтр «белая лента», к фильтрату добавляют раствор эриохрома черного Т, приготовленный в 0,5% растворе аммиака, далее проводят определение цинка в пробе спектрофотометрическим методом при длине волны 557±2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см. Способ иллюстрируется следующими примерами.

Пример 1

Определение цинка в ткани печени

К 3,0 г мелкоизмельченной ткани печени прибавляют 1 мл раствора, содержащего 150 мкг цинка (соответствует 660 мкг цинка сульфата семи-водного), тщательно перемешивают биологическую ткань с раствором и оставляют на два часа при температуре 18-20°С. По истечении указанного времени биологический объект, содержащий анализируемое вещество, переносят в фарфоровый тигель вместимостью 25 мл, высушивают в сушильном шкафу при температуре 150°С, охлаждают в эксикаторе и помещают в муфельную печь. В течение 8-12 часов при постепенном нагреве температуры до 400°С осуществляют минерализацию методом сухого озоления до полного сжигания органических веществ. Полученную золу обрабатывают по каплям концентрированным раствором нитрата аммония при нагревании (в фарфоровой чашке на электрической плитке) до получения бесцветных кристаллов цинка нитрата. Кристаллы растворяют в 3 мл 0,1М хлороводородной кислоты, фильтруют через обеззоленный фильтр «белая лента» диаметром 55 мм в колбу вместимостью 5 мл, доводят объем до метки тем же растворителем.

Аликвоту приготовленного раствора в объеме 0,1 мл наносят на линию старта нормально-фазовой пластины ТСХ «Merck» 20×20 см с силикагелем 60. Процесс хроматографирования осуществляют, используя двухкомпонентную подвижную фазу, которой является смесь растворителей гексан-уксусная кислота в соотношении 7:3 по объему. При достижении фронта растворителей линии финиша сорбент с зоны абсорбции (Rf = 0,45) тщательно счищают, не допуская потерь сорбента, и растворяют в 5 мл 0,5% раствора аммиака. Смесь интенсивно взбалтывают и фильтруют через обеззоленный фильтр «белая лента» диаметром 55 мм в колбу вместимостью 10 мл. К фильтрату добавляют 1 мл 0,01% раствора эриохрома черного Т, приготовленного в 0,5% растворе аммиака, доводят объем до метки тем же растворителем и проводят определение цинка в пробе спектрофотометрическим методом.

Определение проводят, используя спектрофотометр BioRad SmartSpecPlus (США). Измеряют оптическую плотность испытуемого раствора на фоне 0,5% раствора аммиака при длине волны 557±2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см. Количественное содержание цинка рассчитывают по оптической плотности, используя уравнение градуировочного графика с учетом навески и разведения.

Контрольный опыт проводят по предлагаемой методике без предварительного внесения в биоматериал анализируемого вещества.

Построение градуировочного графика.

Готовят 0,02% раствор эриохрома черного Т в 0,5% растворе аммиака (раствор 1). В колбу вместимостью 100 мл вносят 0,0220 г цинка сульфата семи-водного, что составляет 0,005 г в пересчете на цинк, и доводят до метки водой дистиллированной (раствор 2). В ряд мерных колб вместимостью 10 мл вносят 10; 20; 40; 80; 120; 160; 200; 240 мкл раствора 2 и 40; 80; 160; 320; 480; 640; 800; 900 мкл раствора 1, доводят объем содержимого каждой колбы до метки 0,5% раствором аммиака. Полученные растворы измеряют на спектрофотометре BioRad SmartSpecPlus (США) на фоне 0,5% раствора аммиака при длине волны 557 ± 2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см.

По результатам измерений на спектрофотометре строят график зависимости оптической плотности от концентрации определяемого вещества. График линеен в интервале концентраций 5∙10-8-1,2∙10-6 г/мл.

Методом наименьших квадратов рассчитывают уравнение градуировочного графика, которое в данном случае имеет вид:

А = 1,6442Х - 0,000036,

где А - оптическая плотность; Х - концентрация определяемого вещества в спектрофотометрируемой пробе, мкг/мл.

Результаты количественного определения цинка в ткани печени представлены в таблице 1.

Пример 2

Определение цинка в ткани зерновок кукурузы

К 3,0 г мелкоизмельченной ткани зерновок кукурузы прибавляют 1 мл раствора, содержащего 150 мкг цинка (соответствует 660 мкг цинка сульфата семи-водного), тщательно перемешивают биологическую ткань с раствором и оставляют на два часа при температуре 18-20°С. По истечении указанного времени биологический объект, содержащий анализируемое вещество, переносят в фарфоровый тигель вместимостью 25 мл, высушивают в сушильном шкафу при температуре 150°С, охлаждают в эксикаторе и помещают в муфельную печь. В течение 8-12 часов при постепенном нагреве температуры до 400°С осуществляют минерализацию методом сухого озоления до полного сжигания органических веществ. Полученную золу обрабатывают по каплям концентрированным раствором нитрата аммония при нагревании (в фарфоровой чашке на электрической плитке) до получения бесцветных кристаллов цинка нитрата. Кристаллы растворяют в 3 мл 0,1М хлористоводородной кислоты, фильтруют через обеззоленный фильтр «белая лента» диаметром 55 мм в колбу вместимостью 5 мл, доводят объем до метки тем же растворителем.

Аликвоту приготовленного раствора в объеме 0,1 мл наносят на линию старта нормально-фазовой пластины ТСХ «Merck»20×20 см с силикагелем 60. Процесс хроматографирования осуществляют, используя двухкомпонентную подвижную фазу, которой является смесь растворителей гексан-уксусная кислота в соотношении 7:3 по объему. При достижении фронта растворителей линии финиша сорбент с зоны абсорбции (Rf = 0,45) тщательно соскребают, не допуская потерь сорбента, растворяют в 5 мл 0,5% раствора аммиака, фильтруют через обеззоленный фильтр «белая лента» диаметром 55 мм в колбу вместимостью 10 мл. К фильтрату добавляют 1 мл 0,01% раствора эриохрома черного Т, приготовленного в 0,5% растворе аммиака, доводят объем до метки тем же растворителем и проводят определение цинка в пробе спектрофотометрическим методом.

Определение проводят, используя спектрофотометр BioRad SmartSpecPlus (США). Измеряют оптическую плотность испытуемого раствора на фоне 0,5% раствора аммиака при длине волны 557±2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см. Количественное содержание цинка рассчитывают по оптической плотности, используя уравнение градуировочного графика, с учетом навески и разведения.

Контрольный опыт проводят по предлагаемой методике без предварительного внесения в биоматериал анализируемого вещества.

Построение градуировочного графика

Построение градуировочного графика и его уравнение приводятся в примере 1.

Результаты количественного определения цинка в ткани зерновок кукурузы представлены в таблице 2.

Нижний предел обнаружения цинка в биологическом материале составляет 3 мкг/г (при увеличении объема аликвоты, вносимой на пластину ТСХ, до 0,3 мл). Нижний предел обнаружения цинка в спектрофотометрируемой пробе составляет 0,05 мкг/мл. Сравнение предлагаемого способа с методом атомно-абсорбционной спектрометрии цинка представлено в таблице 3.

Таблица 1 Результаты определения цинка в ткани печени (n = 5; P = 0,95) Контр. опыт, мкг в 3 г печени Внесено, мкг в 3 г печени Оптическая плотность Найдено от внесенного Метрологические характеристики мкг % 1. 189,1 150,0 1,089 142,1 94,73 = 95,13% 2. 167,0 150,0 1,020 143,2 95,47 S = 0,3509 3. 174,5 150,0 1,045 143,3 95,53 Sδ = 0,1569 4. 170,4 150,0 1,029 142,5 95,00 = 0,44 5. 183,6 150,0 1,072 142,4 94,93 = 0,46% Таблица 2 Результаты определения цинка в ткани зерновок кукурузы (n = 5; P = 0,95) Контр. опыт, мкг в 3 г кукурузы Внесено, мг в 3 г кукурузы Оптическая плотность Найдено от внесенного Метрологические характеристики мкг % 1. 147,1 150 0,956 143,6 95,73 = 95,83% 2. 139,6 150 0,934 144,4 96,27 S = 0,3645 3. 151,7 150 0,973 144,2 96,13 Sδ = 0,1630 4. 144,3 150 0,946 143,4 95,60 = 0,45 5. 140,6 150 0,933 143,1 95,40 = 0,47% Таблица 3 Сравнение предлагаемого способа с методом атомно-абсорбционной спектрометрии Показатели Предлагаемый способ Атомно-абсорбционная спектрометрия 95,13% 99,61% 0,44 1,68 0,46% 1,69% Нижний предел обнаружения в биологическом материале 3 мкг/г печени 0,5 мкг/мл крови

Таким образом, предлагаемый способ, основанный на образовании комплексного соединения эриохрома черного Т с цинком и спектрофотометрии этого комплекса в видимой области, по сравнению с прототипом, основанном на образовании комплексного соединения дитизона с цинком и спектрофотометрии этого комплекса в видимой области, повышает процент обнаружения цинка, улучшает точность и существенно увеличивает чувствительность определения. Аналитические характеристики предлагаемого способа - процент обнаружения, относительная погрешность среднего результата, нижний предел обнаружения - приближены к методу атомно-абсорбционной спектрометрии, при этом предлагаемый способ не требует наличия дорогостоящего, сложного в эксплуатации оборудования и является общедоступным.

Похожие патенты RU2808414C1

название год авторы номер документа
Способ определения кадмия в биологическом материале 2023
  • Королев Владимир Анатольевич
  • Медведева Ольга Анатольевна
  • Бабкина Людмила Александровна
  • Шевченко Алина Владимировна
  • Фелькер Елена Викторовна
  • Ворсина Екатерина Сергеевна
  • Парахина Ольга Владимировна
  • Усачев Максим Антонович
  • Чертова Регина Юрьевна
  • Артемова Ирина Александровна
  • Магомедова Диана Радимовна
  • Павленко Елена Александровна
  • Ходжаева Виктория Вячеславовна
  • Миненков Дмитрий Владимирович
  • Миненкова Эльвира Викторовна
  • Королев Егор Владимирович
  • Милова Анастасия Ивановна
RU2810518C1
Способ определения простых сахаров в тонком слое сорбента 2016
  • Тринеева Ольга Валерьевна
  • Сафонова Елена Федоровна
  • Сливкин Алексей Иванович
  • Назарова Александра Александровна
RU2642264C2
Способ количественного определения алюминия, ванадия, вольфрама, железа, кадмия, кобальта, магния, марганца, меди, никеля, свинца, стронция, титана, хрома, цинка в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой 2016
  • Зайцева Нина Владимировна
  • Уланова Татьяна Сергеевна
  • Вейхман Галина Ахметовна
  • Стенно Елена Вячеславовна
  • Гилева Ольга Владимировна
  • Недошитова Анна Владимировна
  • Баканина Марина Александровна
RU2627854C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛИФЕНОЛЬНЫХ СОЕДИНЕНИЙ МЕТОДОМ СТУПЕНЧАТОГО ЭЛЮИРОВАНИЯ В ТОНКОМ СЛОЕ СОРБЕНТА 2015
  • Тринеева Ольга Валерьевна
  • Сливкин Алексей Иванович
  • Сафонова Елена Федоровна
  • Назарова Александра Александровна
  • Шикунова Нина Сергеевна
RU2597661C1
СПОСОБ ИДЕНТИФИКАЦИИ И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ГЛУТАМИНОВОЙ КИСЛОТЫ 2014
  • Тринеева Ольга Валерьевна
  • Сафонова Елена Федоровна
  • Сафонова Ирина Игоревна
  • Сливкин Алексей Иванович
  • Назарова Александра Александровна
  • Синкевич Анастасия Вячеславовна
RU2581727C1
СПОСОБ ОПРЕДЕЛЕНИЯ Н-БУТИЛОВОГО ЭФИРА 2-[4-(5-ТРИФТОРМЕТИЛПИРИДИЛ-2-ОКСИ)ФЕНОКСИ]ПРОПИОНОВОЙ КИСЛОТЫ В БИОЛОГИЧЕСКОМ МАТЕРИАЛЕ 2005
  • Шорманов Владимир Камбулатович
  • Иванов Владимир Петрович
  • Елизарова Мадина Камбулатовна
  • Королёв Владимир Анатольевич
  • Коробанова Татьяна Юрьевна
  • Пистунович Елена Владимировна
  • Прокошев Александр Алексеевич
RU2287812C1
СПОСОБ ОПРЕДЕЛЕНИЯ КАРМУАЗИНА В СОКАХ 2015
  • Павлова Ольга Николаевна
  • Короткова Елена Ивановна
  • Воронова Олеся Александровна
  • Дорожко Елена Владимировна
  • Вишенкова Дарья Александровна
RU2596796C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МАГНИЯ В МАСЛАХ 2005
  • Алаторцев Евгений Иванович
  • Тимофеев Федор Владимирович
  • Постникова Нина Георгиевна
  • Муратова Раиса Дмитриевна
  • Приваленко Алексей Николаевич
  • Кузнецов Андрей Александрович
RU2278380C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ КАДМИЯ, СВИНЦА, МЫШЬЯКА, ХРОМА, НИКЕЛЯ, МЕДИ, ЦИНКА, МАРГАНЦА, ВАНАДИЯ, СТРОНЦИЯ, СЕЛЕНА, ТАЛЛИЯ В КРОВИ МЕТОДОМ МАСС-СПЕКТРОМЕТРИИ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ 2015
  • Зайцева Нина Владимировна
  • Уланова Татьяна Сергеевна
  • Вейхман Галина Ахметовна
  • Стенно Елена Вячеславовна
  • Гилева Ольга Владимировна
  • Недошитова Анна Владимировна
  • Баканина Марина Александровна
RU2585369C1
Способ определения бора 1990
  • Неудачина Людмила Константиновна
  • Сурова Татьяна Викторовна
  • Аккузина Вероника Евгеньевна
SU1797022A1

Иллюстрации к изобретению RU 2 808 414 C1

Реферат патента 2023 года Способ определения цинка в биологическом материале

Изобретение относится к экологии, биологии и токсикологической химии. Предложен способ определения цинка в биологическом материале, заключающийся в том, что биологический объект измельчают, высушивают, осуществляют минерализацию методом сухого озоления, золу обрабатывают концентрированным раствором нитрата аммония при нагревании, полученные кристаллы растворяют в хлороводородной кислоте, фильтруют, устраняют мешающие влияния других тяжелых металлов, получают окрашенное комплексное соединение цинка с органическим веществом и проводят определение спектрофотометрическим методом, отличающийся тем, что полученные кристаллы растворяют в 0,1М хлороводородной кислоте, фильтруют через обеззоленный фильтр «белая лента», аликвоту приготовленного раствора наносят на линию старта нормально-фазовой пластины ТСХ, процесс хроматографирования осуществляют, используя двухкомпонентную подвижную фазу, которой является смесь растворителей гексан-уксусная кислота в соотношении 7:3 по объему, сорбент с зоны абсорбции тщательно счищают, не допуская потерь сорбента, растворяют в 0,5% растворе аммиака, смесь интенсивно взбалтывают, фильтруют через обеззоленный фильтр «белая лента», к фильтрату добавляют раствор эриохрома черного Т, приготовленный в 0,5% растворе аммиака, далее проводят определение цинка в пробе спектрофотометрическим методом при длине волны 557 ± 2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см. Технический результат - повышение процента обнаружения, а также увеличение точности и чувствительности определения цинка в биологическом материале при использовании общедоступного в аппаратурном и экономическом отношении способа. 1 ил., 3 табл., 2 пр.

Формула изобретения RU 2 808 414 C1

Способ определения цинка в биологическом материале, заключающийся в том, что биологический объект измельчают, высушивают, осуществляют минерализацию методом сухого озоления, золу обрабатывают концентрированным раствором нитрата аммония при нагревании, полученные кристаллы растворяют в хлороводородной кислоте, фильтруют, устраняют мешающие влияния других тяжелых металлов, получают окрашенное комплексное соединение цинка с органическим веществом и проводят определение спектрофотометрическим методом, отличающийся тем, что полученные кристаллы растворяют в 0,1М хлороводородной кислоте, фильтруют через обеззоленный фильтр «белая лента», аликвоту приготовленного раствора наносят на линию старта нормально-фазовой пластины ТСХ, процесс хроматографирования осуществляют, используя двухкомпонентную подвижную фазу, которой является смесь растворителей гексан-уксусная кислота в соотношении 7:3 по объему, сорбент с зоны абсорбции тщательно счищают, не допуская потерь сорбента, растворяют в 0,5% растворе аммиака, смесь интенсивно взбалтывают, фильтруют через обеззоленный фильтр «белая лента», к фильтрату добавляют раствор эриохрома черного Т, приготовленный в 0,5% растворе аммиака, далее проводят определение цинка в пробе спектрофотометрическим методом при длине волны 557 ± 2 нм, соответствующей максимуму поглощения комплекса эриохром + цинк в 0,5% растворе аммиака, и толщине поглощающего слоя 1 см.

Документы, цитированные в отчете о поиске Патент 2023 года RU2808414C1

Е.А.ПЕТРАКОВА "Методики определения цинка в пробах сточных, подсточных вод и растительной биомассе", Вестник Брянского государственного университета
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
стр
Раздвижной паровозный золотник с подвижными по его скалке поршнями между упорными шайбами 1922
  • Трофимов И.О.
SU148A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ КАТИОНОВ ЦИНКА В СЫВОРОТКЕ КРОВИ С ОДНОВРЕМЕННЫМ ОПРЕДЕЛЕНИЕМ СООТНОШЕНИЯ КАТИОНОВ ЦИНКА И МЕДИ В ТОЙ ЖЕ ПРОБЕ 2013
  • Гарипова Маргарита Ивановна
  • Зинатуллина Линиза Равилевна
  • Гарипов Олег Салаватович
  • Усманова Рита Равилевна
RU2548751C2
КОЛЬЦЕВАЯ ХЛЕБОПЕКАРНАЯ ПЕЧЬ НЕПРЕРЫВНОГО ДЕЙСТВИЯ 1927
  • Марсаков Г.М.
SU21065A1
Способ определения тяжелых металлов в биологических объектах 1989
  • Каплин Анатолий Александрович
  • Хаханина Татьяна Ивановна
  • Губина Надежда Германовна
  • Кубрак Борис Аркадьевич
SU1735774A1
DE3817907 A1 30.11.1989
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ЦЕЛЬНОЙ КРОВИ 2001
  • Зайцева Н.В.
  • Уланова Т.С.
  • Плахова Л.В.
  • Суетина Г.Н.
  • Стенно Е.В.
RU2184973C1

RU 2 808 414 C1

Авторы

Королев Владимир Анатольевич

Медведева Ольга Анатольевна

Бабкина Людмила Александровна

Шевченко Алина Владимировна

Фелькер Елена Викторовна

Ворсина Екатерина Сергеевна

Парахина Ольга Владимировна

Усачев Максим Антонович

Чертова Регина Юрьевна

Артемова Ирина Александровна

Магомедова Диана Радимовна

Павленко Елена Александровна

Ходжаева Виктория Вячеславовна

Миненков Дмитрий Владимирович

Миненкова Эльвира Викторовна

Королев Егор Владимирович

Милова Анастасия Ивановна

Даты

2023-11-28Публикация

2023-03-10Подача