Изобретение относится к области получения сульфидов тяжелых цветных металлов и может быть использовано для получения высокоcортных сульфидных концентратов, а также в химической технологии производства неорганических веществ, в частности сульфидов цинка, обладающих пигментными свойствами.
Известен способ осаждения из водных растворов цветных металлов в виде сульфидов сульфидизацией смесью металлического железа и серы, растворенной в щелочи [1]
Недостатки способа высокое остаточное содержание серы элементарной в осадке, загрязнение последнего железом и высокий расход осадителя.
Наиболее близким к предлагаемому является способ очистки водных растворов от металлов осаждением их в виде сульфидов. Способ включает обработку воды раствором серы в известковом молоке. На заключительной стадии обработку ведут смесью серы, растворенной в гидроокиси кальция и известкового молока [2]
Однако при таком способе осаждения расход осадителя остается большим, так как снижается с шестикратного избытка только до пятикратного. Способ не устраняет главный недостаток, присущий процессам сульфидизации серой, растворенной в щелочи, а именно не исключает выделение в осадок вместе с сульфидами большей части растворенной серы в виде элементарной.
Цель изобретения повышение качества целевого сульфидного продукта, не загрязненного элементарной серой, снижение расхода осадителя.
Поставленная цель достигается тем, что первично осажденный серой, растворенной в щелочи, осадок вместе с маточным раствором обрабатывают сначала щелочью для растворения образовавшейся в осадке серы элементарной, а затем в суспензию подают исходный раствор соли металла для сульфидизации его активной частью растворенной серы. Для полной конверсии серы щелочь для обработки берут в отношении к конверсируемой сере (конверсия серы элементарной понимается как ее ионизация и необратимое связывание ионизированных соединений в устойчивые соединения, в частности в сульфиды металлов) от 1,25-0,75:1 и проводят от 6 до 13 циклов сульфидизирующей обработки.
Процесс осуществляется следующим образом. После первичного осаждения по известному способу [3] образовавшийся в реакторе осадок сульфидов и серы элементарной вместе с маточным раствором периодически или непрерывно обрабатывают щелочью при перемешивании и нагревании до температуры 80-100оС в течение времени, достаточного для полного растворения элементарной серы. В полученную суспензию соответственно периодически или непрерывно подают исходный раствор соли металла для сульфидизации его активной частью растворенной серы. Количество вводимого металла контролируют по окончанию выделения сульфидов.
Один цикл процесса в общем виде описывается суммарной реакцией
6OH- + nSo + Me2+ ->> MeS +
+ (n-3)So + S2O32- + 3H2O, согласно которой количество серы элементарной в осадке снижается на величину, слагающуюся из количества конверсируемой серы, пошедшей на сульфидизацию введенного металла и остающейся в маточнике в виде неактивных растворенных соединений.
Для полной конверсии серы цикл сульфидизирующей обработки многократно повторяют, после чего конечную суспензию периодически или непрерывно выпускают из реактора и подвергают обычным операциям отстаивания и фильтрования.
П р и м е р 1. Берут 0,5 дм3 сульфатного раствора с концентрацией никеля 28,9 г/дм3 и в реакторе при перемешивании в течение 10 мин раствором серы в едком натре при концентрации серы 280 г/дм3, осаждают сульфиды никеля.
При извлечении никеля в сульфиды на уровне 99,8% расход серы равен 50 г, что составляет почти шестикратный избыток по сравнению с эквивалентом на образование сульфидов. В полученную суспензию, твердая часть которой содержит 23,6 г сульфида никеля и 33,1 г элементарной серы, подают едкий натр в отношении 0,94:1 и перемешивают при температуре 95оС в течение 20 мин до полного растворения последней. Затем в суспензию в течение 5-10 мин подают порциями или непрерывно исходный никелевый раствор. Количество никеля, вводимого на сульфидирование активной частью растворенной серы, определяется по окончании выделения в осадок сульфидов и судят о нем по исчезновению в растворе сульфидообразующих ионов. В опыте до полной конверсии серы проводят 10 циклов обработки. Опыты проводят с получением по предложенному способу сульфидов цинка. Для этого согласно прототипу первично осаждают сульфиды из сульфатных растворов, содержащих 33,8 г/дм3 цинка, при тех же (что и в прототипе) параметрах. После этого при отношении едкого натра к сере, равном 0,75:1, в каждом цикле обработки до полной конверсии серы проводят 13 циклов сульфидизирующей обработки.
Результаты экспериментов приведены в табл. 1. Из таблицы видно, что путем многоцикловой сульфидизирующей обработки первично осажденного сульфидного продукта по предлагаемому способу и различном количестве этих циклов достигается полная конверсия серы, в 3 раза снижается ее расход, получены сульфиды, которые содержат следовые количества элементарной серы.
П р и м е р 2. Берут 0,5 дм3 хлоридного раствора с концентрацией цинка 35,5 г/дм3 и согласно прототипу осаждают сульфиды цинка смесью известкового молока и растворы серы с гидроокиси кальция с концентрацией серы 170 г/м3. Количество гидроокиси кальция в известковом молоке берут 5,3 г, что составляет 20% от веса осаждаемых сульфидов. При извлечении цинка в сульфиды на уровне 98,4% расход серы равен 45 г, что составляет почти пятикратный избыток по сравнению с эквивалентом. В суспензию, содержащую в твердой части 26,5 г сульфидов цинка и 27,6 г элементарной серы, подают гидроокись кальция в отношении к сере 0,94: 1 и проводят сульфидизирующую обработку, как в примере 1. В данном опыте до полной конверсии серы проводят 10 циклов обработки.
Результаты опытов приведены в табл. 2.
Из табл. 2 видно, что, несмотря на некоторое снижение расхода осадителя (с шестикратного до пятикратного избытка) при первичном осаждении практически полная конверсия серы реализуется при тех же 10 циклах обработки, что и по предлагаемому способу.
В примере 2 при тех же параметрах, расходах реагентов, осаждают сульфиды цинка из раствора цинкового купороса с такой же концентрацией цинка 35,5 г/м3. Затем проводят 10 циклов сульфидизирующей обработки и получают эквимолярную смесь сульфидов цинка и кристаллогидратов сульфата кальция с содержанием сульфидов цинка 64,8 г, что составляет около 40% от общей массы смеси, и элементарной серы в количестве 0,02 г.
П р и м е р 3. Получают сульфиды никеля и цинка, сначала осаждая, как и в примере 1, по известному способу, а затем с использованием едкого натра проводят многоцикловую сульфидизирующую обработку полученных суспензий по предложенному способу до полной конверсии серы. Обработку проводят при различных отношениях едкого натра к сере и количестве циклов обработки. Дополнительно конечные сульфидные цинковые осадки после промывки и сушки подвергают обработке известными методами для получения пигментов, в частности прокалке в неокислительной атмосфере при 650оС в течение 40 мин, после чего определяют их пигментные показатели.
Конечные результаты опытов и пигментные показатели полученных сульфидов цинка приведены в табл. 3.
Исходя из результатов табл. 3, делаем выводы о том, что с уменьшением отношения едкого натра к сере от 1,25:1 до 0,53:1 количество циклов сульфидизирующей обработки увеличивается от 6 до 18. Число циклов обработки не влияет на качество конечных получаемых сульфидов, в том числе и на пигментные качества сульфидов цинка.
В то же время при отношении едкого натра к сере большем, чем 1,25:1, в частности при 1,94:1, заметно снижается выход сульфидов и увеличивается расход серы на сульфидизацию. Вследствие этого наиболее рациональным следует считать отношение, обеспечивающее максимальную степень конверсии серы при минимальном числе циклов сульфидизирующей обработки.
И наконец, получаемые по предлагаемому способу сульфиды цинка обладают высокими качествами белого пигмента. В частности укрывистость составляет 41-43 г/м2, маслоемкость 18-20 г/100 г пигмента и белизна в пределах 91-94 усл.ед.
Отдельно был проведен опыт с использованием для первичного осаждения раствора серы в гидроокиси кальция с концентрацией серы 170 г/дм3, и гидроокиси кальция в виде известкового молока при сульфидизирующей обработке суспензий. Условия первичного осаждения, сульфидизирующей и пигментной обработок получаемых полуфабрикатов такие же, как и в примере 3.
При этом получен пигмент сульфопон, представляющий собой эквимолярную смесь 41,4% сульфида цинка и 58,6% сульфата кальция и обладающий укрывистостью на уровне 84 г/м3, маслоемкостью 19-21 г/100 г пигмента и белизной в пределах 92-95 усл.ед.
Таким образом, предлагаемый способ позволяет получать высококачественный сульфидный продукт, используя для сульфидизации нетоксичный дешевый реагент, производимый в обычных условиях по месту применения из доступных материалов.
Получаемый продукт обладает пигментными свойствами, что позволяет расширить область применения предлагаемого способа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДА ЦИНКА ИЛИ СУЛЬФОПОНА | 1991 |
|
RU2039010C1 |
СПОСОБ ГИДРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ШЛАМОВ ПРОИЗВОДСТВА ХИМИЧЕСКОГО ВОЛОКНА | 1993 |
|
RU2034059C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДА ЦИНКА | 1996 |
|
RU2105020C1 |
Способ охлаждения сульфидов цветных металлов | 1978 |
|
SU717148A1 |
СПОСОБ ПЕРЕРАБОТКИ ПУЛЬПЫ ПОСЛЕ АВТОКЛАВНО-ОКИСЛИТЕЛЬНОГО ВЫЩЕЛАЧИВАНИЯ СУЛЬФИДНЫХ ПОЛИМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ, СОДЕРЖАЩЕЙ ОКСИДЫ ЖЕЛЕЗА И ЭЛЕМЕНТНУЮ СЕРУ | 2014 |
|
RU2544329C1 |
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ ТРУДНОВСКРЫВАЕМЫХ ПИРРОТИНСОДЕРЖАЩИХ МАТЕРИАЛОВ, ПАССИВИРОВАННЫХ ПРОДУКТАМИ КИСЛОРОДНОЙ КОРРОЗИИ СУЛЬФИДОВ | 2002 |
|
RU2235139C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАЛЬЦИЕВОГО СУЛЬФИДИЗАТОРА ДЛЯ ОСАЖДЕНИЯ ТЯЖЕЛЫХ ЦВЕТНЫХ МЕТАЛЛОВ ИЗ КИСЛЫХ СУЛЬФАТНЫХ РАСТВОРОВ И ЖИДКОЙ ФАЗЫ ГИДРАТНЫХ ЖЕЛЕЗИСТЫХ ПУЛЬП | 1997 |
|
RU2120484C1 |
СПОСОБ ОСАЖДЕНИЯ НИКЕЛЯ, КОБАЛЬТА И МЕДИ СЕЛЕКТИВНО ОТ ЦИНКА ИЗ СУЛЬФАТНЫХ РАСТВОРОВ В ВИДЕ СУЛЬФИДОВ | 2006 |
|
RU2328537C2 |
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ ОТВАЛОВ ГОРНЫХ ПОРОД ГОРНО-РУДНЫХ ПРЕДПРИЯТИЙ | 2000 |
|
RU2188872C2 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОСУЛЬФИДА КАЛЬЦИЯ | 2020 |
|
RU2742990C1 |
Использование: для получения сульфидов цветных металлов осаждением из растворов их солей. Для снижения расхода осадителя и повышения качества целевого сульфидного продукта, в частности для получения сульфида цинка, обладающего пигментными свойствами, осадок, полученный осаждением серой, растворенной в щелочи, вместе с маточным раствором дополнительно обрабатывают сначала щелочью, а затем в суспензию подают исходный раствор соли металла. Для полной конверсии элементарной серы щелочь для обработки берут в отношении к конверсируемой сере 1,25 - 0,75:1 и проводят от 6 до 13 циклов сульфидизирующей обработки. 3 табл.
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДА ТЯЖЕЛОГО ЦВЕТНОГО МЕТАЛЛА, в частности никеля или цинка, включающий осаждение его из водного раствора соли соответствующего металла сульфидизацией серой, растворенной в щелочи, отделение осадка от маточного раствора и переработку его на товарные продукты, отличающийся тем, что суспензию перед отделением осадка обрабатывают щелочью в количестве, обеспечивающем массовое соотношение к элементарной сере, содержащейся в суспензии, 0,75-1,25: 1 соответственно, а затем в суспензию подают исходный раствор соли металла и проводят сульфидизацию, причем цикл сульфидизирующей обработки повторяют до полного растворения элементарной серы.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ выделения цветных металлов | 1972 |
|
SU579745A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1995-11-20—Публикация
1991-10-28—Подача