СПОСОБ ПЕРЕРАБОТКИ ГАЗОКОНДЕНСАТА Российский патент 1996 года по МПК C10G35/95 

Описание патента на изобретение RU2068870C1

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к переработке газоконденсата с получением моторных топлив, а также топлив, образованных смешением отдельных фракций, выделенных из газоконденсата.

Известные способы переработки углеводородного сырья, добываемого из скважин, включают в себя две стадии. Первая стадия обработка на промыслах, задачей которой является подготовка продукции скважин к транспортировке для последующей переработки на заводских установках. Вторая стадия переработка подготовленного сырья на нефтеперерабатывающих заводах, включая первичные и вторичные процессы переработки (И.А.Гуревич "Технология переработки нефти и газа", ч. I, M. Химия, 1972, с. 153 198).

К вторичным процессам переработки углеводородного сырья в топлива относятся такие основные процессы как процессы риформинга прямогонных бензинов, бензинолигроиновых фракций, крекинг нефтяных фракций, выкипающих более 200oC (См. А.И.Владимиров "Установки каталитического риформинга", М. 1993, с. 8 26). Известны различные схемы организации вторичных процессов (риформинга) с использованием различного углеводородного сырья и каталитических систем.

Так, например, известен способ повышения качества бензинолигроиновых фракций, включающий фракционирование исходного сырья нафты на легкую фракцию и тяжелую фракцию. Тяжелую фракцию подвергают риформингу ароматики и октановое число.

Часть потока риформинга смешивают с легкой фракцией и подвергают риформингу на цеолитсодержащем катализаторе ZS M-5. Получают поток углеводородов, обогащенной ароматикой, который могут быть разделены на фракции. (Патент Великобр. N 2034351, C 10 F 59/00, 1980).

Известен также способ получения высокооктанового бензина из тяжелой бензиновой фракции выкипающей в интервале 140 180oC путем многоступенчатого каталитического риформинга с последующей ректификацией полученных жидких продуктов, причем ректификацию жидких продуктов риформинга ведут с выделением головкой фракции выкипающей от начала кипения до 130 - 160oC и остаточной, выкипающей от 130 160oC до конца кипения и с последующим их смешением в определенном соотношении. (Авт. свид. N 1766945, C 10 G 35/04, 16.10.1989).

В известных способах получения высокооктановых бензинов, осуществляемых в заводских условиях, в качестве исходного сырья используются углеводородные фракции, получение которых из газонефтяного сырья предусматривает множество технологических операций, что усложняет технологию процесса в целом.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ переработки газоконденсата в моторные топлива, предусматривающий отделение газа от конденсата многоступенчатой сепарацией на промыслах и последующую переработку сырого газа и нестабильного конденсата на заводских установках. Переработка нестабильного конденсата включает:
удаление из конденсата метан-этановой фракции (сепарация при температуре 30oC);
обессоливание;
стабилизацию конденсата в целях подготовки его к транспорту или хранению и заключается в удалении сероводорода и фракции легких углеводородов до С4 (ШФЛУ);
деструктивная переработка конденсата, включающая предварительную глубокую гидроочистку, стабилизацию гидрогенизата и последующее фракционирование (ректификацию) с выделением фракций с началом кипения 62oC, 62 85oC, 85 180oC. Фракции 62 85oC и 85 - 180oC подвергают каталитическому облагораживанию на установках типа Л-35-II/1000 с последующей ректификацией и получением высокооктановых бензинов. Процесс риформинга ведут при температуре 450 530oC, давлении 1,5 3,0 МПа и объемных скоростях 1,2-1,5 ч-1 ("Технология переработки сероводородсодержащего газа и конденсата" под ред. Вакулина В.И. Оренбург, 1990, с. 103 129).

Недостатком прототипа является сложная технология переработки газоконденсата в моторные топлива, обусловленная промысловой подготовкой конденсата к транспорту на завод и сложная переработка его на заводе, включающая стадии стабилизации, фракционирования, гидроочистки полученных фракций, каталитического облагораживания и ректификации. Кроме того, как правило, выделяемое при стабилизации конденсата и его фракционирования легкие углеводороды не поступают на переработку, а теряются (сжигаются), что уменьшает выход целевых топливных фракций.

Задачей настоящего изобретения является создание способа переработки газоконденсата обеспечивающего возможность переработки его в районе добычи газоконденсата с получением моторных топлив, при одновременном упрощении технологии процесса, увеличении выхода высококачественных топливных фракций за счет вовлечения в процесс переработки дополнительного количества легких углеводородов и обеспечении регулирования выхода бензиновых, керосиновых и дизельных фракций.

Поставленная задача решается предлагаемым способом переработки газоконденсата, включающим отделение газа от жидкой фазы и переработку нестабильного конденсата в моторные топлива с использованием процессов каталитического облагораживания и ректификации, отличительная особенность которого состоит в том, что облагораживанию подвергают непосредственно нестабильный конденсат в присутствии цеолитсодержащего катализатора при температуре 250 430oC, давлении 0,1 1,5 МПа, после чего катализат подвергают ректификации с отбором целевых топливных фракций.

Предпочтительно процесс облагораживания следует вести с использованием цеолитсодержащего катализатора, имеющего следующий cостав, мас. цеолит Y с мольным отношением SiO2/Al2O3, равным от 4,0 до 8,0, 0,05 5,0, сверхвысококремнеземный цеолит с мольным отношением SiO2/Al2O3, равным от 20 до 100, 0,05 85,0, матрица - остальное.

Целесообразно каталитическое облагораживание вести при объемной скорости подачи сырья 0,5 3,5 м33•ч), а процесс ректификации в присутствии газообразных продуктов, образующихся в процессе каталитического облагораживания и/или газов ректификации.

Совокупность указанных признаков позволяет: существенно упростить технологию переработки газоконденсата и осуществлять ее непосредственно на промыслах; увеличить выход моторных топлив за счет привлечения в процесс переработки фракции легких углеводородов, растворенных в нестабильном конденсате и получать эти продукты с высокими потребительскими свойствами (см. данные таблицы 2); регулировать соотношения в выходах бензиновых, дизельных и керосиновых фракций, за счет регулирования температурных условий процесса и состава используемого катализатора.

На чертеже изображена принципиальная схема установки для получения моторных топлив по предлагаемой технологии.

Установка включает сепаратор 1 для отделения газа от конденсата, реактор облагораживания 2, ректификационные колонны 3.

Способ осуществляют следующим образом: газоконденсат из скважины поступает в сепаратор 1 (или систему сепараторов высокого и низкого давления), где происходит отделение сырого газа от конденсата. Сырой газ поступает на дальнейшую переработку, а полученный нестабильный конденсат с растворенными в нем легкими углеводородами поступает в реактор 2, где при температуре 250
430oC, давлении 0,1 1,5 МПа, объемной скорости подачи сырья 0,5 3,5 м3/(м3•ч) в присутствии цеолитсодержащего катализатора происходит процесс облагораживания.

В качестве цеолитсодержащего катализатора могут быть использованы любые известные катализаторы, содержащие цеолиты сверхвысококремнеземные типа пентасил или цеолиты типа Y, в состав которых введены различные неорганические связующие глина, алюмооксид, кремнезем, металлосиликаты и т.д. (см. например, А. с. N 1594768, B 01 J 29/08, 1983 г. А.с. N 1594767, B 01 J 29/08, 1983 г. А.с. N 1396334, B 01 J 29/12, 1982 г. А.с. N 1396333, B 01 J 29/12, 1984 г. пат. G B N 2034351, C 10 G 59/00, 1980; EP N 0032414, C 10 G 59/02, 1981; JP N 54-23362, C 10 G 37/10, 1979 г. и т.д.).

Наилучшие результаты были получены на катализаторе, представляющим собой смесь двух цеолитов цеолита типа Y с мольным отношением SiO2/Al2O3, равным 4,0oC8,0, в количестве 0,05 5,0% мас. и сверхвысококремнеземного цеолита, с мольным отношением SiO2/Al2O3, равным 20 100, в количестве 0,05 85,0, матрица остальное.

Цеолит Y и сверхвысококремнеземный цеолит, входящие в состав катализатора, могут быть использованы в ионообменной редкоземельной форме, и/или Н-форме, и/или Zn-формах. В качестве матрицы (связующего) могут быть использованы: бемит, псевдобемит, α-Al2O3, g-Al2O3, аморфные алюмосиликаты, цирконийсиликаты и т. д. В процессе облагораживания происходит образование в катализате изопарафиновых и ароматических углеводородов, которые способствуют более высоким октановым и цетановым числам моторных топлив. Образующийся катализат (жидкие продукты реакции) затем поступают в ректификационную колонну 3, где происходит выделение следующих углеводородных фракций: бензиновые н.к. 120oC, 120 140oC или 120 160oC, или 120 180oC или 120 - 200oC, или н. к. 200oC и керосино-дизельная фракция 200 - 350oC. Процесс ректификации целесообразно вести в присутствии газообразных продуктов, образующихся в процессе каталитического облагораживания и/или газов ректификации, которые выполняют роль инертных газов. Затем в зависимости от сезонной потребности в топливах получают летние и зимние сорта автомобильных и дизельных топлив путем смешения бензиновых и дизельных фракций в определенных соотношениях.

Характеристика использованных нестабильных конденсатов, получаемых в результате отделения из газокондесата сырого газа, представлена в таблице 1.

Ниже приведены примеры, иллюстрирующие способ, но не огранивающие его.

Катализаторы по примерам 2 17 готовят следующими способами:
Цеолит Y и сверхвысококремнеземный цеолит в ионообменных H-и/или редкоземельной, и/или Zn-формах смешивают с матрицей и затем формуют в виде экструдатов, таблеток, шариков, сушат и прокаливают (примеры 2, 4 7, 9 12, 17).

Цеолит Y и сверхвысококремнеземный цеолит в Na-формах смешивают с матрицей, формуют в виде экструдатов, таблеток, шариков и затем проводят ионный обмен катионов Na+ на редкоземельные и/или катионы Zn+2 и/или Н+, промывают водой, сушат и прокаливают (примеры 3, 8, 13 16).

Пример 1. Водный раствор сульфата алюминия концентрации 20 кг/м3 по Al2O3 и содержащий 80 кг/м3 H2SO4, водный раствор силиката натрия концентрации 130 кг/м3 по SiO2 и содержащий 65 кг/м3 NaOH, водную суспензию цеолита NaY и сверхвысококремнеземного цеолита концентрации соответственно 1,4 и 140,0 кг/м3 смешивают при температуре 15oC c образованием гидрогеля с рН= 8,5. Затем гидрогель подвергают обработке водным раствором сульфата аммония концентрации 10 кг/м3 при температуры 50oC в течение 24 часов, промывают дистиллированной водой при 50oC в течение 24 часов, сушат при 170oC и прокаливают при 550oC в среде воздуха в течение 12 часов. Получают катализатор следующего состава: цеолит Y в Н форме с мольным отношением SiO2/Al2O3, равным 8,0 0,05% цеолит сверхвысококремнеземный в Н форме с мольным отношением SiO2/Al2O3, равным 100 5% остальное матрица аморфный алюмосиликат.

Пример 2. Каталитическое облагораживание нестабильного конденсата осуществляется при 250oC, и объемной скорости подачи сырья 0,75 м3/(м3•ч) и давлении 1,5 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 5,2 5,0% цеолит сверхвысококремнеземный в Н-форме с мольным отношением равным 40 25% остальное матрица псевдобемит.

Пример 3. Каталитическое облагораживание нестабильного конденсата осуществляется при 430oC, объемной скорости подачи сырья 3,5 м3/(м3•ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н-форме с мольным отношением SiO2/Al2O3 равным 8,0, 0,05% цеолит сверхвысококремнеземный в Н-форме с мольным отношением SiO2/Al2O3, равным 100, 5% остальное матрица аморфный алюмосиликат.

Пример 4. Каталитическое облагораживание нестабильного конденсата осуществляют при 275oC, объемной скорости подачи сырья 2,5 м3/(м3•ч) и давлении 0,5 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 4,0, 2,0% цеолит сверхвысококремнеземный в Zn-форме с мольным отношением SiO2/Al2O3, равным 20, 50% остальное матрица - g-Al2O3.

Пример 5. Каталитическое облагораживание нестабильного конденсата осуществляют при 350oC, объемной скорости подачи сырья 1,5 м3/(м3•ч) и давлении 0,2 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Zn-форме с мольным отношением SiO2/Al2O3; равным 4,8, 1,0% cверхвысококремнеземный цеолит в Н-форме с мольным отношением SiO2O3, равным 60, 0,5% остальное матрица аморфный цирконийсиликат.

Пример 6. Каталитическое облагораживание нестабильного конденсата осуществляют при 400oC, объемной скорости подачи сырья 2,0 м3/(м3•ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н-форме с мольным отношением SiO2/Al2O3, равным 5,1, 1,5% цеолит сверхвысококремнеземный в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 60, 30% остальное матрица - a-Al2O3.

Пример 7. Каталитическое облагораживание нестабильного конденсата осуществляют при 300oC, объемной скорости подачи сырья 1,0 м33•ч) и давлении 1,0 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 7,2, 5,0% цеолит сверхвысококремнеземный в Zn-форме с мольным отношением SiO2/Al2O3, равным 100, 0,05% остальное матрица - аморфный магнийсиликат.

Пример 8. Каталитическое облагораживание газового конденсата осуществляют при 375oC, объемной скорости подачи сырья 1,5 м3/(м3•ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н-форме с мольным отношением SiO2/Al2O3, равным 4,8, 1,0% цеолит сверхвысококремнеземный в Н-форме с мольным отношением SiO2/Al2O3, равным 45, 85% остальное матрица бемит.

Пример 9. Каталитическое облагораживание нестабильного конденсата осуществляют при 250oC, объемной скорости подачи сырья 1,0 м3/(м3•ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит в H-и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 5,1, 3,5% цеолит сверхвысококремнеземный в Н-форме с мольным отношением SiO2O3, равным 65, 20% остальное матрица g-Al2O3.

Пример 10. Катализатор как в примере 9. Каталитическое облагораживание нестабильного конденсата осуществляют при 350oC, объемной cкорости подачи сырья 1,0 м3/(м3•ч) и давлении 0,1 МПа.

Пример 11. Катализатор как в примере 9. Каталитическое облагораживание нестабильного конденсата осуществляют при 430oC, объемной скорости подачи сырья 1,0 м3/(м3•ч) и давлении 0,1 МПа.

Пример 12. Катализатор как в примере 9. Каталитическое облагораживание нестабильного конденсата осуществляюся при 375oC, объемной скорости 1,5 м3/(м3•ч) и давлении 0,5 МПа.

Пример 13. Каталитическое облагораживание нестабильного конденсата осуществляют при 400oC, объемной скорости подачи сырья 1,5 м3/(м3•ч) и давлении 0,25 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н- и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 70, 1,5% остальное матрица аморфный цирконийсиликат.

Пример 14. Катализатор как в примере 13. Каталитическое облагораживание нестабильного конденсата осуществляют при 400oC, объемной скорости подачи сырья 1,0 м3/(м3•ч) и давлении 0,1 МПа.

Пример 15. Катализатор как в примере 13. Каталитическое облагораживание нестабильного конденсата осуществляют при 375oC, объемной скорости подачи сырья 1,0 м3/(м3•ч) и давлении 1,5 МПа.

Пример 16. Каталитическое облагораживание нестабильного конденсата осуществляют при 430oC, объемной скорости подачи сырья 1,0 м3/(м3•ч) и давлении 0,15 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н- и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 5,1, 25% остальное матрица аморфный цирконийсиликат.

Пример 17. Каталитическое облагораживание нестабильного конденсата осуществляют при 375oC, объемной скорости подачи сырья 1,5 м3/(м3•ч) и давлении 0,2 МПа при использовании катализатора, имеющего состав, мас. цеолит сверхвысококремнеземный в Н- и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 70, 5,0% остальное матрица аморфный магнийсиликат.

Полученные пробы катализата в процессе облагораживая нестабильного конденсата (примеры 2 17) подвергают ректификации в присутствии газообразных продуктов, образовавшихся при облагораживании нестабильного конденсата и/или при ректификации. Температура катализата при входе в ректификационную колонку составляет 270 320oC и давлении 0,12 0,20 МПа.

Результаты опытов представлены в таблице 2.

Таким образом преимуществом предлагаемого способа является:
возможность осуществлять переработку продукции скважин в районе промысла, что даст возможность сэкономить затраты на подготовку скважинной продукции к транспортировке, транспортировку и доставку моторных топлив на месторождение углеводородного сырья;
упрощение схемы переработки за счет исключения ряда технологических операций (соответственно аппаратов);
повышение выхода моторных топлив за счет вовлечения в процесс переработки легких углеводородов;
получение высокооктановых бензинов с октановым числом до 85 98 и дизельных топлив с пентановым числом 45 54 с выходом до 93,7% мас.

возможность регулировать выход бензиновых и дизельных фракций в зависимости от потребности в том или ином виде топлива. ТТТ1 ТТТ2

Похожие патенты RU2068870C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Мельников В.Б.
  • Вершинин В.И.
  • Макарова Н.П.
RU2183656C1
СПОСОБ ОБЛАГОРАЖИВАНИЯ БЕНЗИНА 1994
  • Мельников В.Б.
  • Вершинин В.И.
  • Макарова Н.П.
RU2049806C1
КАТАЛИЗАТОР ДЛЯ ОБЛАГОРАЖИВАНИЯ БЕНЗИНА, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОБЛАГОРАЖИВАНИЯ БЕНЗИНА 1994
  • Мельников В.Б.
  • Макарова Н.П.
  • Вершинин В.И.
RU2043785C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Мельников В.Б.
  • Вершинин В.И.
  • Сорокина Т.В.
RU2051138C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВЫХ БЕНЗИНОВ 2005
  • Долинский Сергей Эрикович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
RU2284343C1
КАТАЛИЗАТОР ДЛЯ ОБЛАГОРАЖИВАНИЯ БЕНЗИНОВ 1993
  • Мельников В.Б.
  • Макарова Н.П.
  • Вершинин В.И.
RU2043148C1
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ НА ОСНОВЕ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ 1998
  • Полатханов Джабраил Джамал Оглы
  • Барсуков О.В.
RU2152977C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 1992
  • Степанов Виктор Георгиевич
  • Ионе Казимира Гавриловна
RU2010836C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2004
  • Смирнов В.К.
  • Мельников В.Б.
  • Ишмияров М.Х.
  • Рахимов Х.Х.
  • Ирисова К.Н.
  • Вершинин В.И.
  • Макаров А.Е.
  • Барсуков О.В.
  • Бабаев М.И.
  • Лукъянчиков И.И.
  • Патрикеев В.А.
RU2252242C1
КАТАЛИЗАТОР И СПОСОБ СОВМЕСТНОЙ ПЕРЕРАБОТКИ НИЗКООКТАНОВЫХ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ И АЛИФАТИЧЕСКИХ СПИРТОВ И/ИЛИ ДИМЕТИЛОВОГО ЭФИРА 2010
  • Тарасов Андрей Леонидович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
  • Беляев Андрей Юрьевич
  • Виленский Леонид Михайлович
RU2429910C1

Иллюстрации к изобретению RU 2 068 870 C1

Реферат патента 1996 года СПОСОБ ПЕРЕРАБОТКИ ГАЗОКОНДЕНСАТА

Использование: нефтехимия. Сущность: от газоконденсата отделяют газ. Нестабильный газоконденсат подвергают контактированию с цеолитсодержащим катализатором при 250 - 430oC, давлении 0,1 - 1,5 МПа. Катализат подвергают ректификации с получением топливных фракций. Используют предпочтительно катализатор состава, % мас: цеолит Y с мольным отношением SiO2/Al2O3 от 4,0 до 8,0 - 0,05 - 5,0, высококремнеземный цеолит с мольным отношением SiO2/Al2O3 от 20,0 до 100,0 - 0,05 - 85,0, матрица - остальное. Облагораживание проводят при объемной скорости подачи сырья 0,5 - 3,5 м33•ч. Ректификацию проводят в присутствии газообразных продуктов процесса облагораживания и/или газов ректификации. 3 з.п. ф-лы, 2 табл., 1 ил.

Формула изобретения RU 2 068 870 C1

1. Способ переработки газоконденсата, включающий отделение газа от жидкой фазы, переработку полученного нестабильного конденсата в моторные топлива с использованием процессов каталитического облагораживания и ректификации, отличающийся тем, что облагораживанию подвергают непосредственно нестабильный конденсат в присутствий цеолитсодержащего катализатора при 250 430oС, 0,1 1,5 МПа, после чего катализат подвергают ректификации с отбором целевых топливных фракций. 2. Способ по п. 1, отличающийся тем, что облагораживание проводят в присутствии цеолитсодержащего катализатора состава, мас.

Цеолит типа V с молярным отношением SiO2/Аl2O3 4 8 - 0,05 5,0
Высококремнеземный цеолит с молярным отношением SiO2/Al2O3 20 100 0,05 85,0
Матрица Остальное
3. Способ по п.1, отличающийся тем, что каталитическое облагораживание проводят при объемной скорости подачи сырья 0,5 3,5 м33•ч.

4. Способ по п.1, отличающийся тем, что ректификацию катализата проводят в присутствии газообразных продуктов, образующихся в процессе каталитического облагораживания, и/или газов ректификации.

Документы, цитированные в отчете о поиске Патент 1996 года RU2068870C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Гуревич И.А
Технология переработки нефти и газа
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Паровозный золотник (байпас) 1921
  • Трофимов И.О.
SU153A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Владимиров А.И
Способ изготовления фанеры-переклейки 1921
  • Писарев С.Е.
SU1993A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
ДИСПЕНСЕРНЫЙ КАТОД 1991
  • Йонг-Сео Чой[Kr]
RU2034351C1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Способ получения высокооктанового бензина 1989
  • Воронин Александр Иванович
  • Шестаков Виктор Васильевич
  • Стадничук Дмитрий Михайлович
  • Батырбаев Назип Адибович
  • Стариков Николай Федорович
SU1766945A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Технология переработки сероводородсодержащего газа и конденсата/ Под ред
Способ приготовления консистентных мазей 1919
  • Вознесенский Н.Н.
SU1990A1
Клапанный регулятор для паровозов 1919
  • Аржанников А.М.
SU103A1

RU 2 068 870 C1

Авторы

Мельников Вячеслав Борисович

Даты

1996-11-10Публикация

1994-11-18Подача