Изобретение относится к способам переработки избыточного активного ила биологических очистных сооружений очистки сточных вод, содержащих тяжелые металлы. Трудность переработки и утилизации подобного ила состоит в содержании в нем значительных количеств тяжелых металлов, исключающее использование обезвоженных илов в сельском хозяйстве в качестве [1]: органо-минеральных удобрений, сырьевого источника для производства белкововитаминных добавок к корму животных и птицы, для получения аминокислот и т.д.
Известны способы переработки избыточного активного ила [2] путем уплотнения или сгущения, в том числе отстаиванием, центрифугированием, фильтрованием, обезвоживанием с последующим направлением на иловые площадки или в шламонакопители. Обезвоживание ила протекает очень медленно, что обусловливает большие площади иловых площадок и шламонакопителей. Необходима стабилизация осадков путем кислотного или щелочного анаэробного сбраживания для предотвращения загнивания и появления неприятных запахов. При высоком содержании в активном иле тяжелых металлов его подвергают сжиганию в камерных, многоподовых или других печах.
Для проведения сжигания используют осадки после длительного обезвоживания на иловых площадках или в шламонакопителях. Образующаяся зола, содержащая тяжелые металлы, может использоваться при производстве строительных материалов или захоранивается. Недостатками методов являются: необходимость использования иловых площадок больших площадей, сложность аппаратурного оформления процессов, возможность загрязнения атмосферы продуктами горения, затраты энергии. Практически не используется ценное органическое вещество ила.
Наиболее близким к заявляемому является способ переработки активного ила с использованием материалов, содержащих соединения кальция, например, смесей карбида и оксида кальция [3]. Для превращения ила в хрупкий твердый продукт, лишенный запаха, его сначала сгущают до влажности 90%, затем тщательно смешивают 20-30 частей указанных материалов со 100 частями активного ила в закрытых аппаратах, что приводит к разогреву смеси ила и введенных материалов по меньшей мере до 120oC, к выделению газов и паров. В качестве материалов для переработки используют смесь карбида кальция с регенерированным оксидом кальция или смесь свежих веществ. Перемешивание осуществляют до достижения pH 11, уменьшая количество патогенных микроорганизмов в иле. Газы и пары удаляют до остаточной влажности менее 5%. Получают горючий продукт значительно меньшей массы. Твердый продукт термически обрабатывают с разложением гидроксида кальция до оксида, тяжелые металлы при этом переходят в инертную золу. Распылением легкую золу оксида кальция отделяют от твердой фазы тяжелой инертной золы, которую вывозят на свалку.
К недостаткам способа относятся: сложность технологии переработки, необходимость затрат дорогих реагентов или энергии на их частичную регенерацию, применение закрытых аппаратов, образование больших объемов паров и газопылевых выбросов, уничтожение при сжигании органического вещества активного ила.
Техническим результатом изобретения является упрощение технологии выделения тяжелых металлов из ила с последующим использованием органического вещества ила в сельском хозяйстве.
Технический результат достигают тем, что избыточный активный ил после сгущения с влажностью 90-92% смешивают с материалом, содержащим малорастворимые соли кальция - CaCO3, CaSO4 • nH2O, в виде природных материалов или отходов промышленности, например, мела, известняка, гипса, фосфогипса при соотношении 5-15 частей на 100 частей активного ила, перемешивают в течение 3-6 часов при температуре 6-30oC. Далее разделяют твердую и жидкую (водную), содержащую тяжелые металлы, фазы методами отстаивания, и/или фильтрования, и/или центрифугирования.
Или активный ил смешивают и перемешивают с материалом, содержащим малорастворимые карбонат или сульфат кальция до сгущения ила.
Водную фазу, содержащую тяжелые металлы, направляют на реагентное осаждение гидроксидов металлов, или на ионообменное, или на адсорбционное извлечение тяжелых металлов.
При смешении активного ила и кальцийсодержащих материалов не изменяется pH жидкой фазы, который составляет 5-8. При указанных условиях микроорганизмы активного ила адсорбируются на введенных материалах, используют их для питания, при котором происходит замена в структуре микроорганизмов тяжелых металлов на кальций. Тяжелые металлы переходят в водную фазу в виде растворимых солей или коллоидных гидроксидов. Экспериментально подтверждено, что при проведении перемешивания менее 3 часов не происходит глубокого выделения тяжелых металлов и остаточное содержание их в активном иле в расчете на сухое вещество превышает содержание их, отвечающее требованиям, предъявляемым к активному илу сельским хозяйством [4], [5]. Увеличение продолжительности процесса более 6 часов незначительно увеличивает степень извлечения металлов, но возрастают затраты на проведение процесса.
При смешении сгущенного активного ила с влажностью 90-92% с кальцийсодержащим материалом степень перехода тяжелых металлов в водную фазу, обеспечивающая требуемое остаточное содержание их в сухом веществе активного ила, достигается только за 5-6 часов. Однако объем сгущенного ила меньше объема несгущенного ила на 30-50% и, соответственно, меньше объем аппаратуры. При смешении с кальцийсодержащим материалом ила до сгущения при его влажности до 96% возрастает скорость перехода тяжелых металлов в водную фазу вследствие более благоприятного соотношения жидкость: твердое в смеси. Кроме того при сгущении активного ила часть микроорганизмов погибает, что отражается на выделении тяжелых металлов.
Уменьшение соотношения материал : активный ил менее 5:100 приводит к сокращению адсорбционной поверхности для микроорганизмов и скорость выделения металлов уменьшается. При соотношении более 15:100 разделение фаз требует больших затрат энергии и сопровождается значительным захватом жидкой фазы с переработанным илом. Согласно экспериментальным данным при температурах ниже 6oC и выше 30oC скорость выделения тяжелых металлов уменьшается и для обеспечения требуемой степени извлечения необходимо увеличение продолжительности перемешивания в 1,5-3 раза, что приведет к существенному увеличению объема аппаратуры и расхода энергии на перемешивание.
Значительное увеличение концентрации тяжелых металлов в водной фазе после переработки ила - до нескольких десятков или сотен мг/дм3 - обеспечивает применимость для извлечения металлов из водной фазы реагентного осаждения, например, при использовании известкового молока, соды, для создания pH на уровне 7-9. При указанных концентрациях тяжелые металлы могут быть выделены из водной фазы методами ионного обмена, например, на ионите КУ-2 или с помощью сорбентов типа сульфоуглей, цеолитов. При регенерации ионитов или адсорбентов промывкой кислотными растворами в регенерационных растворах концентрация металлов возрастает до граммов и десятков г в литре, что существенно упрощает их утилизацию. Обьем водной фазы после предлагаемой переработки ила на порядок меньше, чем обьем исходной сточной воды.
Для экспериментов были отобраны пробы избыточного активного ила Новгородских городских очистных сооружений. Состав образцов активного ила приведен в конце описания.
В качестве исходных кальцийсодержащих материалов использовали:
- природный гипс измельченный с содержанием 95% CaSO4 • 2H2O;
- фосфогипс с размером частиц в среднем 80 мкм в виде капиллярно пористого материала с фиксированной структурой с диаметром пор 0,1-1,5 мкм с содержанием,%: CaSO4 • 2H2O - 95, Ca(H2PO4)2 - 4, CaF2 - 1;
- мел измельченный с содержанием CaCO3 - 96%.
Для анализа содержания тяжелых металлов в твердой и жидкой фазах использовали атомноабсорбционный спектрофотометр "Сатурн" и спектрофотометр фирмы "Перкин-Элмер". Для определения концентрации тяжелых металлов в сухом веществе активного ила твердую фазу высушивали при 106oC до постоянного веса. Результаты опытов приведены в примерах и таблице.
Пример 1. Сгущенный фильт-прессованием активный ил с влажностью 91% смешивают с карбонатом кальция в виде мела при соотношении 10:100, перемешивают в течение 6 часов при 20oC и pH 6. Через 6 часов проводят разделение фаз центрифугированием. Твердую фазу высушивают и анализируют. В твердой фазе находят, мг/кг сухой массы: железа - 1820, цинка - 510, меди - 460, никеля - 24, хрома - 110, кобальт и свинец отсутствуют. Такой ил пригоден для использования в сельском хозяйстве [4]. Водную фазу обрабатывают содой до pH 8,5, тяжелые металлы выпадают в осадок в виде гидроксидов, который отделяют отстаиванием и захоранивают, а оставшуюся водную фазу возвращают на биохимическую очистку сточных вод.
Пример 9. Активный ил до сгущения с влажностью 96% смешивают с сульфатом кальция в виде гипса при соотношении 5:100, перемешивают в течение 6 часов при 20oC. Через 6 часов проводят сгущение. Сгущенный ил разделяют на фильтр-прессе на твердую и жидкую фазу, содержащую тяжелые металлы. В твердой фазе находят содержание тяжелых металлов, мг/кг сухой массы: железа - 2906, цинка - 960, меди - 580, никеля - 47, хрома - 145, кобальта - 7, свинца - 0. В водной фазе концентрация металлов составляет, мг/дм3: цинка - 15, меди - 24,4, железа - 87, никеля - 9. Водную фазу нейтрализуют известковым молоком до pH 8,5. Тяжелые металлы выпадают в осадок, который отделяют отстаиванием. Масса влажного осадка тяжелых металлов составляет менее 0,05% массы исходного избыточного активного ила. Осадок подвергают захоронению.
Пример 12. Активный ил до сгущения с влажностью 96% смешивают с сульфатом кальция в виде фосфогипса в соотношении 15:100, перемешивают в течение 6 часов при 20oC, затем сгущают. Сгущенный ил центрифугируют. В твердой фазе определяют содержание тяжелых металлов, мг/кг сухой массы: железа - 900, цинка - 320, меди - 350, никеля - 16, хрома - 95, кобальта и свинца по 1. Такой ил пригоден для использования в сельском хозяйстве [4]. Водную фазу, содержащую, мг/дм3: цинка - 13, меди - 40, железа - 118, никеля - 14 пропускают через слой ионита КУ-2 и извлекают на 96%. Очищенную воду возвращают на очистку. Ионит подвергают обработке раствором серной кислоты, концентрат солей тяжелых металлов, объем которого менее 0,1% объема исходного ила, захоранивают или утилизируют.
Таким образом предложенный способ существенно проще, так как проводится в открытых аппаратах, исключены стадии термической обработки, выделения газов и паров, сложная стадия разделения твердых фаз. Органическое вещество активного ила может быть использовано в сельском хозяйстве.
Список использованной литературы:
1. Науака О., Ватанабе Н. Хоккайдо коге дайгаку кэюкие. - Met. Hokka ido Inst. Techn. 1990, N 18, p. 269 - 280.
2. Туровский И.С. Научно-технический прогресс в области обработки и утилизации осадков сточных вод. - М.: ОНТИ АКХ, 1986.
3. Патент США 5242601, С 02 P 1/52, 07.09.93.
4. Туулиннен Суокко. Курсы по очистным технологиям сточных вод.- Санкт-Петербург: 21-23.09.93. Главное управление водного хозяйства и окружающей среды. - Хельсинки; 1993, с. 109-111.
5. Сан ПиН 2.1.7.573-96.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ИЗБЫТОЧНОГО АКТИВНОГО ИЛА | 2000 |
|
RU2174964C1 |
СПОСОБ ПЕРЕРАБОТКИ ИЗБЫТОЧНОГО АКТИВНОГО ИЛА, СОДЕРЖАЩЕГО ТЯЖЕЛЫЕ МЕТАЛЛЫ | 2002 |
|
RU2220923C1 |
СПОСОБ ОЧИСТКИ СУЛЬФИДСОДЕРЖАЩИХ РАСТВОРОВ И СТОЧНЫХ ВОД | 1999 |
|
RU2158236C1 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ РАСТВОРОВ ХРОМОВОГО ДУБЛЕНИЯ КОЖЕВЕННОГО ПРОИЗВОДСТВА | 1998 |
|
RU2129992C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФИДОВ | 1995 |
|
RU2099292C1 |
СПОСОБ ВЫДЕЛКИ КОЖИ ИЗ ШКУР РЫБ | 2000 |
|
RU2172778C1 |
СПОСОБ ПОЛУЧЕНИЯ ИОНООБМЕННОГО ВОЛОКНА | 2000 |
|
RU2194809C2 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ РАСТВОРОВ ХРОМОВОГО ДУБЛЕНИЯ | 2003 |
|
RU2230794C1 |
ТЕКСТИЛЬНЫЙ ОБЪЕМНЫЙ ВОЛОКНИСТЫЙ КАТАЛИЗАТОР | 1997 |
|
RU2118908C1 |
СОСТАВ ДЛЯ КОМПЛЕКСНОЙ ОТДЕЛКИ ТКАНЕЙ (ВАРИАНТЫ) | 1998 |
|
RU2164970C2 |
Изобретение относится к способам переработки избыточного активного ила биологических очистных сооружений очистки сточных вод, содержащих тяжелые металлы. Для осуществления способа активный ил после сгущения смешивают с материалом, содержащим малорастворимые соли кальция в виде природных минералов или отходов промышленности, при соотношении 5-15 частей материала на 100 частей ила, перемешивают 3-6 ч при 6-30oC, разделяют твердую и водную, содержащую тяжелые металлы, фазы. Стадии смешения и перемешивания могут осуществляться до стадии сгущении. Тяжелые металлы выделяют из водной фазы реагентным осаждением, методами ионного обмена или адсорбции. Техническим результатом изобретения является упрощение технологии выделения тяжелых металлов из ила с последующим использованием органического вещества ила в сельском хозяйстве. 2 з.п. ф-лы, 2 табл.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
US 5242601 A, 1993 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ сгущения микробной биомассыиз СуСпЕНзии АКТиВНОгО илА | 1979 |
|
SU814900A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Способ обезвоживания осадка сточныхВОд | 1978 |
|
SU827424A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Способ уплотнения избыточного активного ила | 1983 |
|
SU1165645A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННЫХ ОСАДКОВ | 1994 |
|
RU2057725C1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Способ получения госсипола | 1961 |
|
SU143392A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
US 5186840 A, 1993 | |||
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
DE 4109759 C1, 1992 | |||
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
DE 3545321 A1, 1987 | |||
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
КОНВЕЙЕР ДЛЯ ПРОИЗВОДСТВА ОБЛИЦОВОЧНЫХ КЕРАМИЧЕСКИХ ПЛИТОК МЕТОДОМ ЛИТЬЯ | 0 |
|
SU249249A1 |
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
DE 2920914 A1, 1980. |
Авторы
Даты
1999-07-20—Публикация
1998-02-02—Подача