СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ Российский патент 2000 года по МПК C21C7/00 

Описание патента на изобретение RU2154678C1

Изобретение относится к металлургии, конкретнее к нагреву стали в сталеразливочном ковше, основанном на использовании тепла экзотермических окислительных реакций.

Наиболее близким по технической сущности является способ обработки стали в ковше, включающий подачу в ковш алюминия, продувку металла в ковше кислородом сверху и нейтральным газом.

В процессе обработки стали в ковше в металл подают алюминий в виде проволоки с линейной скоростью 5-10 м/с и с расходом 0,5-3,0 кг/т стали. После окончания подачи алюминиевой проволоки подают кислород через погружную фурму на глубину, равную 0,4-0,6 высоты уровня металла в ковше с расходом 0,18-0,32 м3/мин•т стали в течение 1-12 мин. После окончания продувки кислородом металл продувают в ковше нейтральным газом с расходом 0,1-0,4 м3/ч•т стали в течение 3-6 мин (См. патент РФ, N 2092576, кл. C 21 C 7/00, БИ N 28, 1997 г. ).

Недостатком известного способа является недостаточная производительность и эффективность процесса нагрева стали в ковше. Это объясняется тем, что при подаче кислорода через погружную фурму после прекращения подачи в ковш алюминия происходит перераспределение в стали концентрации ранее поданного алюминия из верхних слоев металла по объему ковша. В этих условиях окислительные экзотермические реакции взаимодействия кислорода и алюминия протекают в неполной мере. Сказанное является следствием ухудшения кинетических условий подвода реагентов, в частности алюминия к месту реакции.

Технический эффект при использовании изобретения заключается в повышении производительности и эффективности нагрева стали в ковше.

Указанный технический эффект достигают тем, что способ обработки стали в ковше включает подачу в ковш алюминия в виде проволоки и последующую продувку металла в ковше сверху кислородом через погружную фурму.

Алюминий предварительно вводят в ковш до начала продувки кислородом с расходом, определяемым по зависимости:
P=K1•M•/[Al]•t,
где P - расход алюминия, кг/т стали в ковше;
t - температура стали в ковше, oC;
M - масса стали в ковше, т;
[Al] - содержание алюминия в стали перед ее обработкой в ковше, масс.%;
K1 - эмпирический коэффициент, характеризующий физико-химические закономерности экзотермических окислительных реакций, равный 0,007-0,56, кг•%•oC/т2;
а после ввода предварительной порции алюминия его продолжают подавать и одновременно сталь в ковше продувают кислородом с расходом, определяемым по зависимости:
Q = K2•q•Δt•M,
где Q - расход кислорода, м3/мин•т стали;
q - расход алюминия, равный 50-180 кг/мин;
Δt - необходимое повышение температуры стали в ковше, oC;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный (0,05-4,0)•10-6, м3/кг•т2oC.

Повышение производительности и эффективности нагрева стали в ковше будет происходить вследствие обеспечения необходимых кинетических условий протекания процесса окисления алюминия. Сказанное объясняется тем, что оба реагента одновременно будут подаваться и взаимодействовать в одном и том же локальном объеме.

Диапазон значений коэффициента K1 в пределах 0,007-0,56 объясняется физико-химическими закономерностями экзотермических окислительных реакций. При меньших значениях не будет обеспечиваться необходимый нагрев стали в ковше. При больших значениях будет происходить перерасход алюминия без дальнейшего повышения температуры стали в ковше.

Указанный диапазон устанавливают в зависимости от емкости ковша.

Диапазон значений коэффициент K2 в пределах (0,05-4,0)•10-6 объясняется физико-химическими закономерностями окисления алюминия в стали. При меньших значениях не будет обеспечиваться необходимое повышение температуры стали в ковше. При больших значениях будет происходить перерасход кислорода и алюминия без дальнейшего повышения температуры стали в ковше.

Указанный диапазон устанавливают в зависимости от необходимости повышения температуры стали в ковше.

Диапазон значений расхода алюминия в пределах 50-180 кг/мин в процессе продувки стали кислородом в ковше объясняется физико-химическими закономерностями окисления алюминия и протекания экзотермических реакций в ковше. При меньших значениях не будет происходить повышение температуры стали до необходимых пределов. В этих условиях алюминиевая проволока не будет достигать локального объема окислительной реакции вследствие ее расплавления. При больших значениях будет происходить перерасход алюминия без дальнейшего повышения температуры стали в ковше.

Указанный диапазон устанавливают в зависимости от емкости ковша и необходимого повышения температуры стали в нем.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Способ обработки стали в ковше осуществляют следующим образом.

Пример. В процессе обработки стали следующего химического состава, мас. %: C=0,02-0,30; Si=0,02-1,0; Mn=0,10-2,0; Al=0,02-0,10 в ковш предварительно подают алюминий в виде проволоки диаметром 8-12 мм со скоростью 5-10 м/с. При этом расход алюминия устанавливают по зависимости:
P=K1•M/[Al]•t,
где P - расход алюминия, кг/т стали в ковше;
t - температура стали в ковше, oC;
M - масса стали в ковше, т;
[Al] - содержание алюминия в стали перед ее обработкой в ковше, мас.%;
K1 - эмпирический коэффициент, характеризующий физико-химические закономерности экзотермических окислительных реакций, равный 0,007-0,56, кг•%•oC/т2.

После ввода предварительной порции алюминия его продолжать подавать и одновременно сталь в ковше продувают кислородом с расходом, определяемым по зависимости:
Q = K2•q•Δt•M,
где Q - расход кислорода, м3/мин•т стали в ковше;
q - расход алюминия, равный 50-180 кг/мин;
Δt - необходимое повышение температуры стали в ковше, oC;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный (0,05-4,0)•10-6, м3/кг•т2oC.

Глубину погружения фурмы для подачи кислорода устанавливают в пределах 0,2-0,5 высоты ковша.

Вследствие указанных параметров обработки стали обеспечиваются необходимые кинетические условия протекания процесса окисления алюминия и выделения тепла, при этом оба реагента одновременно подаются и взаимодействуют в одном и том же локальном участке в объеме ковша.

В таблице приведены примеры осуществления способа с различными технологическими параметрами.

В первом примере не достигается необходимое повышение температуры стали в ковше вследствие малых расходов алюминия и кислорода, а также глубины погружения фурмы в ковш.

В пятом примере происходит перерасход алюминия и кислорода без дальнейшего повышения температуры стали в ковше сверх необходимых 100oC.

В оптимальных примерах 2-4 вследствие необходимых значений расхода алюминия и кислорода, а также глубины погружения фурмы для продувки кислородом в ковш обеспечивается технологически необходимое повышение температуры стали в ковш.

Применение изобретения позволяет повысить производительность и эффективность нагрева стали в ковше на 15-20%.

Похожие патенты RU2154678C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Нырков Н.И.
RU2156308C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Карпов В.Ф.
RU2159290C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Лебедев В.И.
RU2156309C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Мазуров В.М.
RU2154677C1
СПОСОБ ХИМИЧЕСКОГО НАГРЕВА СТАЛИ 2006
  • Дьяченко Виктор Федорович
  • Сарычев Александр Валентинович
  • Великий Андрей Борисович
  • Николаев Олег Анатольевич
  • Павлов Владимир Викторович
RU2340682C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Савченко В.И.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
RU2159289C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2005
  • Суханов Юрий Федорович
  • Хребин Валерий Николаевич
  • Дагман Алексей Игорьевич
  • Лебедев Владимир Ильич
RU2290447C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1997
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Аршанский М.И.
  • Чернушевич А.В.
  • Ильин В.И.
  • Минеев В.Н.
  • Когородский В.Г.
  • Югов П.И.
  • Зинько Б.Ф.
  • Лебедев В.И.
RU2124567C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1997
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Аршанский М.И.
  • Чернушевич А.В.
  • Ильин В.И.
  • Минеев В.Н.
  • Корогодский В.Г.
  • Югов П.И.
  • Зинько Б.Ф.
  • Лебедев В.И.
RU2127766C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2001
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Соколов А.А.
  • Синюц В.И.
  • Анисимов И.Н.
  • Аглямова Г.А.
  • Мамышев В.А.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Суханов Ю.Ф.
  • Хребин В.Н.
  • Балабанов Ю.М.
  • Захаров Д.В.
RU2185448C1

Иллюстрации к изобретению RU 2 154 678 C1

Реферат патента 2000 года СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ

Изобретение относится к металлургии, конкретнее к нагреву стали в сталеразливочном ковше, основанном на использовании тепла экзотермических окислительных реакций. Технический результат заключается в повышении производительности и эффективности нагрева стали в ковше. Способ обработки стали в ковше включает подачу в ковш алюминия (Al) в виде проволоки и последующую продувку металла в ковше сверху кислородом через погружную фурму. Al предварительно вводят в ковш до начала продувки кислородом с расходом, определяемым по зависимости: P = К1 • M/[Al] • t, где Р - расход Al, кг/т стали в ковше; t - температура стали в ковше, oC; М - масса стали в ковше, т; [Al] - содержание Al в стали перед ее обработкой в ковше, мас.%; К1 - эмпирический коэффициент, равный 0,007 - 0,56 кг•% • oC/т2. После ввода предварительной порции Al его продолжают подавать и одновременно сталь в ковше продувают кислородом с расходом, определяемым по зависимости Q = K2•q•Δt•M, где Q - расход кислорода, м3/мин • т стали в ковше; q - расход Al, равный 50 - 180 кг/мин; Δt - необходимое повышение температуры стали в ковше, oC; К2 - эмпирический коэффициент, равный (0,05 - 4,0) • 10-6 м3/кг • т2oC. 1 табл.

Формула изобретения RU 2 154 678 C1

Способ обработки стали в ковше, включающий подачу в ковш алюминия в виде проволоки и последующую продувку металла в ковше сверху кислородом через погружную фурму, отличающийся тем, что алюминий предварительно вводят в ковш до начала продувки кислородом с расходом, определяемым по зависимости
P = K1 • M • /[Al] • t;
где P - расход алюминия, кг/т стали в ковше;
t - температура стали в ковше, oC;
M - масса стали в ковше, т;
[Al] - содержание алюминия в стали перед ее обработкой в ковше, мас.%;
K1 - эмпирический коэффициент, характеризующий физико-химические закономерности экзотермических окислительных реакций, равный 0,007 - 0,56 • кг • % • oC/т2,
а после ввода предварительной порции алюминия его продолжают подавать и одновременно сталь в ковше продувают кислородом с расходом, определяемым по зависимости
Q = K2•q•Δt•M,
где Q - расход кислорода, м3/мин • т стали в ковше;
q - расход алюминия, равный 50 - 180 кг/мин;
Δt - необходимое повышение температуры стали в ковше, oC;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный (0,05 - 4,0) • 10-6, м3/кг • т2oC.

Документы, цитированные в отчете о поиске Патент 2000 года RU2154678C1

СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1995
  • Суханов Ю.Ф.
  • Хребин В.Н.
  • Рябов В.В.
  • Сафонов И.В.
  • Нырков Н.И.
  • Чиграй С.М.
  • Лебедев В.И.
  • Савватеев Ю.Г.
  • Будюкин А.А.
  • Бурков В.И.
RU2092576C1
СПОСОБ ЛЕГИРОВАНИЯ МАЛОУГЛЕРОДИСТОЙ СТАЛИ АЛЮМИНИЕМ 1994
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Сафонов И.В.
  • Нырков Н.И.
  • Филяшин М.К.
  • Лебедев В.И.
RU2066692C1
1972
SU421717A1
Рафинирующая смесь 1986
  • Смирнов Николай Александрович
  • Исаев Геннадий Александрович
  • Хиженков Сергей Яковлевич
  • Басаев Иван Петрович
  • Шеф Георгий Владимирович
SU1416517A1
US 4586956 A, 06.05.1986
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1
МЕХАНИЗМ ИЗМЕНЕНИЯ ПОЛОЖЕНИЯ ШПИНДЕЛЯ 0
SU284563A1

RU 2 154 678 C1

Авторы

Лисин В.С.

Скороходов В.Н.

Настич В.П.

Кукарцев В.М.

Мизин В.Г.

Захаров Д.В.

Филяшин М.К.

Хребин В.Н.

Суханов Ю.Ф.

Лебедев В.И.

Даты

2000-08-20Публикация

1999-07-07Подача