СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ Российский патент 2000 года по МПК C21C7/06 C21C7/64 

Описание патента на изобретение RU2156309C1

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали.

Наиболее близким по технической сущности является способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму. В качестве шлаковой смеси используют жидкий известково-глиноземистый шлак (См. Технология производства стали в современных конвертерных цехах. С.В. Колпаков и др. М., Машиностроение, 1991, с. 212).

Недостатком известного способа является низкая эффективность обработки стали в ковше, в том числе процесса десульфурации и нагрева стали. Это объясняется применением жидкого известково-глиноземистого шлака, а также нерегламентированными расходами алюминия, кислорода и шлака. В этих условиях жидкий известково-глиноземистый шлак имеет низкую сульфидную емкость. Нерегламентированные расходы алюминия и кислорода не позволяют поддерживать шлак в жидкоподвижном состоянии при оптимальной температуре, что снижает кинетику процесса десульфурации металла. Кроме того, нерегламентированная подача кислорода и алюминия не позволяет эффективно и полно протекать экзотермическим реакциям взаимодействия кислорода и алюминия.

Технический эффект при использовании изобретения заключается в повышении степени десульфурации и нагрева стали.

Указанный технический эффект достигают тем, что способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму.

Расход шлаковой смеси устанавливают по зависимости:
G = K1•(S1 - S2)•M;
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки, мас.%;
M - масса стали в ковше, т;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности обработки стали в ковше шлаковой смесью, равный 4,3 - 12,0 кг/т2•%.

после чего в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемого по эмпирической зависимости:
τ1 = K2•G•Q1•V•q/F•t,
где τ1 - время продувки стали кислородом в ковше, мин;
Q1 - расход кислорода, м3/т•мин;
V - объем стали в ковше, м3;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале ее обработки, град•oC;
F - площадь зеркала стали в ковше, м2;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия шлаковой смеси и стали в процессе ее продувки кислородом, равный 110 - 435 мин2•т3oC/кг2•м4.

После продувки кислородом сталь в ковше продувают нейтральным газом в течение времени, определяемого по зависимости
τ2 = K3•G•Q2,
где τ2 - время продувки стали нейтральным газом, мин;
Q2 - расход нейтрального газа, м3/т•мин;
K3 - эмпирический коэффициент, учитывающий физико-химические закономерности усреднения объема стали в ковше по химсоставу и температуре, равный 76 - 330 т2•мин2/кг•м3.

В качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - Остальное
Повышение степени десульфурации и нагрева стали будет происходить вследствие использования твердой шлаковой смеси заявляемого состава, а также необходимых расходных и временных параметров обработки стали в ковше в оптимальных пределах. В этих условиях наличие в шлаковой смеси гранул алюминия предопределяет образование легкоплавкой эвтектики Al2O3. При этом обеспечивается быстрый перевод извести в жидкое состояние вследствие образования и присутствия в расплаве Al2O3. Регламентированные подачи алюминия и кислорода при внепечной обработке стали позволяет поддержать шлак в жидкоподвижном активном состоянии при оптимальной температуре, что также повышает рафинирующую способность шлака.

Диапазон значений эмпирического коэффициента K1 в пределах 0,3 - 12,0 объясняется физико-химическими закономерностями взаимодействия твердой шлаковой смеси и стали в процессе ее выпуска из сталеплавильного агрегата. При больших значениях не будет происходить десульфурация стали в необходимых пределах. При меньших значениях будет происходить перерасход шлаковой смеси без дальнейшего снижения содержания серы в стали.

Указанный диапазон устанавливают в зависимости от разницы между необходимым содержанием серы в стали после ее обработки и содержанием серы в стали, выпускаемой из сталеплавильного агрегата, а также емкости ковша.

Диапазон значений эмпирического коэффициента K2 в пределах 110 - 435 объясняется физико-химическими закономерностями процесса десульфурации стали при ее обработке в ковше под слоем шлака. При меньших значениях будет увеличиваться время продувки стали кислородом и подачи алюминиевой проволоки сверх допустимых значений. При больших значениях расход кислорода будет ниже необходимых значений.

Указанный диапазон устанавливают в зависимости от величины необходимого содержания серы в готовой стали и емкости ковша.

Диапазон значений эмпирического коэффициента K3 в пределах 76 - 330 объясняется газодинамическими закономерностями перемешивания стали в ковше при помощи нейтрального газа, а также усреднения стали по химсоставу и температуре. При меньших значениях время продувки стали нейтральным газом будет выше допустимых значений. При больших значениях время продувки стали нейтральным газом будет недостаточным.

Указанный диапазон устанавливают в зависимости от емкости ковша.

Диапазон величин содержания компонентов в твердой шлаковой смеси в заявляемых пределах объясняется физико-химическими закономерностями десульфурации стали. При меньших и больших значениях не будет обеспечиваться необходимая эффективность удаления серы из стали. При больших значениях будет происходить перерасход твердой шлаковой смеси.

Указанные диапазоны устанавливают в зависимости от содержания серы в стали, выпускаемой из сталеплавильного агрегата, и емкости ковша.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Способ обработки стали в ковше осуществляют следующим образом.

Пример. В процессе обработки сталь с химическим составом, мас.%: C = 0,02 - 0,30; Si = 0,02 - 1,0; Mn = 0,10 - 2,0; Al = 0,02 - 0,10; S = 0,010 - 0,035 выпускают из конвертера в ковш. В процессе выпуска в ковш подают твердую шлаковую смесь. После наполнения металлом ковш подают на установку доводки металла, где в ковш подают алюминиевую проволоку при помощи трайбаппарата диаметром 8 - 12 мм со скоростью 5 - 10 м/с и одновременно продувают кислородом сверху через погружную фурму. После продувки кислородом сталь в ковше продувают нейтральным газом, например аргоном.

Расход шлаковой смеси устанавливают по зависимости:
G = K1•(S1 - S2)•M,
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%;
M - масса стали в ковше, т;
T - температура стали в конверте перед выпуском, oC;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности процесса обработки стали в ковше шлаковой смесью, равный 4,3 - 12,0 кг/т2•%.

Затем в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемого по зависимости:
τ1 = K2•G•Q1•V•q/F•t,
где τ1 - время продувки стали кислородом в ковше, мин;
Q1 - расход кислорода, м3/т•мин;
V - объем стали в ковше, м3;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, град.C;
F - площадь зеркала стали в ковше, м2;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия шлаковой смеси и стали в процессе ее продувки кислородом, равный 110 - 435 мин2•т3oC/кг2•м4.

После продувки кислородом сталь в ковше продувают нейтральным газом в течение времени, определяемого по зависимости
τ2 = K3•G•Q2,
где τ2 - время продувки стали нейтральным газом, мин;
Q2 - расход нейтрального газа, м3/т•мин;
K3 - эмпирический коэффициент, учитывающий физико-химические закономерности усреднения объема стали в ковше по химсоставу и температуре, равный 76 - 330 т2•мин2/кг/м3.

В качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - остальное.

При подаче алюминия и кислорода в сталь протекают окислительные экзотермические реакции взаимодействия кислорода и алюминия. Эти реакции протекают с большим выделением тепла, что позволяет нагреть металл и шлак до оптимальных температур, повысить жидкотекучесть и активность шлака. При этих условиях повышаются кинетические процессы десульфурации стали.

В таблице приведены примеры осуществления способа с различными технологическими параметрами.

В первом и пятом примерах не обеспечивается необходимое низкое содержание серы в обработанной стали и ее нагрев.

В оптимальных примерах 2 - 4 обеспечивается необходимая десульфурация стали при одновременном ее нагреве.

Применение изобретения позволяет повысить выход годной стали для непрерывной разливки по химсоставу и температуре на 60 - 70%.

Похожие патенты RU2156309C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Нырков Н.И.
RU2156308C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Карпов В.Ф.
RU2159290C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Мазуров В.М.
RU2154677C1
СПОСОБ ВЫПЛАВКИ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ В КОНВЕРТЕРЕ 1999
  • Настич В.П.
  • Казаджан Л.Б.
  • Савченко В.И.
  • Пономарев Б.И.
  • Таран В.Г.
  • Щелканов В.С.
  • Лебедев В.И.
RU2154679C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Лебедев В.И.
RU2154678C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1998
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Лебедев В.И.
RU2138563C1
СПОСОБ ВНЕПЕЧНОЙ ОБРАБОТКИ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1999
  • Настич В.П.
  • Казаджан Л.Б.
  • Барятинский В.П.
  • Савченко В.И.
  • Пономарев Б.И.
  • Таран В.Г.
  • Щелканов В.С.
  • Лебедев В.И.
RU2156307C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2002
  • Ламухин А.М.
  • Зинченко С.Д.
  • Загорулько В.П.
  • Ордин В.Г.
  • Урюпин Г.П.
  • Филатов М.В.
  • Фогельзанг И.И.
  • Лятин А.Б.
  • Зекунов А.В.
  • Лебедев В.И.
RU2218422C2
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2001
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Соколов А.А.
  • Синюц В.И.
  • Анисимов И.Н.
  • Аглямова Г.А.
  • Мамышев В.А.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Суханов Ю.Ф.
  • Хребин В.Н.
  • Балабанов Ю.М.
  • Захаров Д.В.
RU2185448C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2007
  • Наконечный Анатолий Яковлевич
  • Урцев Владимир Николаевич
  • Хабибулин Дим Маратович
  • Шмаков Антон Владимирович
RU2386704C2

Иллюстрации к изобретению RU 2 156 309 C1

Реферат патента 2000 года СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали. Технический эффект заключается в повышении степени десульфурации и нагрева стали. Способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали твердой шлаковой смеси (ШС), состоящей в мас.% из 50 - 90 извести, 1-30 гранулированного алюминия и плавикового шпата остальное. Расход (ШС) устанавливают по зависимости G = К1 • (S1 - S2) • М, где G - расход (ШС), кг/т стали; S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%, S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%, М - масса стали в ковше, т, К1 - эмпирический коэффициент, равный 4,3-12,0 кг/т2 • %. Затем в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемого по определенной зависимости, учитывающей расход кислорода, объем стали в ковше, расход алюминиевой проволоки, температуру стали в ковше при начале ее обработки и площадь зеркала стали в ковше. После продувки кислородом сталь продувают нейтральным газом в течение времени, определяемого по приведенной зависимости. 1 табл.

Формула изобретения RU 2 156 309 C1

Способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму, отличающийся тем, что расход шлаковой смеси устанавливают по зависимости
G = К1•(S1-S2)•М,
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%;
М - масса стали в ковше, т;
К1 - эмпирический коэффициент, учитывающий физико-химические закономерности процесса обработки стали в ковше шлаковой смесью, равный 4,3 - 12,0, кг/т2•%,
при этом в качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - Остальное
после подачи твердой шлаковой смеси в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемом по эмпирической зависимости
τ1= K2•G•Q1•V•q/F•t,
где τ1 - время продувки стали кислородом в ковше, мин;
Q1 - расход кислорода, м3/т•мин;
V - объем стали в ковше, м3;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, oC;
F - площадь зеркала стали в ковше, м2;
К2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия твердой шлаковой смеси и стали в процессе ее продувки кислородом, равный 110 - 435, мин2•т3oC/кг2•м4;
а после продувки кислородом сталь в ковше продувают нейтральным газом в течение времени, определяемом по зависимости
τ2= K3•G•Q2,
где τ2 - время продувки стали нейтральным газом, мин;
Q2 - расход нейтрального газа, м3/т•мин;
К3 - эмпирический коэффициент, учитывающий физико-химические закономерности усреднения объема стали в ковше по химсоставу и температуре, равный 76 - 330 т2•мин2/кг•м3.

Документы, цитированные в отчете о поиске Патент 2000 года RU2156309C1

КОЛПАКОВ С.В
и др
Технология производства стали в современных конвертерных цехах
- М.: Машиностроение, 1991, с.212
Способ производства стабилизированной алюминием низкоуглеродистой стали для холодной штамповки 1986
  • Наконечный Анатолий Яковлевич
  • Радченко Владимир Николаевич
  • Пономаренко Александр Георгиевич
  • Куликов Игорь Вячеславович
  • Табунщиков Виталий Юрьевич
  • Толымбеков Манат Жаксынбергенович
  • Гуров Николай Алексеевич
  • Гизатулин Геннадий Зинатович
  • Панковец Василий Иванович
  • Ларионов Александр Алексеевич
  • Зац Евгения Львовна
  • Кологривова Лидия Николаевна
  • Афонин Серафим Захарович
  • Вяткин Юрий Федорович
  • Булянда Александр Алексеевич
  • Троянский Александр Анатольевич
  • Жаворонков Юрий Иванович
  • Литвинов Виктор Иванович
  • Литвиненко Денис Ануфриевич
  • Никитин Валентин Николаевич
  • Лазько Валентина Григорьевна
SU1663032A1
Способ производства стали преимущественно трубного сортамента 1989
  • Балабанов Юрий Михайлович
  • Нипадистов Дмитрий Степанович
  • Кириленко Виктор Петрович
  • Щелканов Владимир Сергеевич
  • Кукарцев Владимир Михайлович
  • Вечер Виктор Николаевич
  • Мартыненко Александр Константинович
SU1786111A1
Способ десульфурации конверторной стали в ковше 1987
  • Брагинец Юрий Федорович
  • Несвет Владимир Васильевич
  • Бродский Сергей Сергеевич
  • Охотский Виктор Борисович
  • Круглик Лариса Ивановна
  • Зигало Иван Никитович
  • Тараненко Святослав Иванович
  • Пустовой Евгений Николаевич
SU1491888A1
RU 94015771 А1, 27.01.1996
RU 95108422 А1, 20.01.1997
МЕХАНИЗМ НАВЕСКИ ТРАКТОРА 2013
  • Посметьев Валерий Иванович
  • Латышева Маргарита Александровна
  • Зеликов Владимир Анатольевич
  • Рыбалкин Андрей Сергеевич
RU2542761C1
US 4586955, 05.06.1986
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ОЗОНА 2004
  • Потапова Галина Филипповна
  • Блинов Александр Васильевич
  • Касаткин Эдуард Владимирович
  • Клочихин Владимир Леонидович
  • Путилов Александр Валентинович
RU2285061C2
DE 3304762, 09.08.1983
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем 1922
  • Кулебакин В.С.
SU52A1
СПОСОБ ПОЛУЧЕНИЯ 2,4,6-ЗАМЕ1ДЕННОГО S-ТРИАЗИНА 0
SU194098A1

RU 2 156 309 C1

Авторы

Лисин В.С.

Скороходов В.Н.

Настич В.П.

Кукарцев В.М.

Мизин В.Г.

Захаров Д.В.

Филяшин М.К.

Хребин В.Н.

Суханов Ю.Ф.

Лебедев В.И.

Даты

2000-09-20Публикация

1999-07-07Подача