СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ Российский патент 2000 года по МПК C21C7/06 C21C7/64 

Описание патента на изобретение RU2156308C1

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали.

Наиболее близким по технической сущности является способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму. В качестве шлаковой смеси используют жидкий известково-глиноземистый шлак (Технология производства стали в современных конвертерных цехах. С.В. Колпаков и др. М.: Машиностроение, 1991, с. 212).

Недостатком известного способа является низкая эффективность обработки стали в ковше, в том числе процесса десульфурации и нагрева стали. Это объясняется применением жидкого известково-глиноземистого шлака, а также нерегламентированными расходами алюминия, кислорода и шлака. В этих условиях жидкий известково-глиноземистый шлак имеет низкую сульфидную емкость, т.к. нерегламентированные расходы алюминия и кислорода не позволяют поддерживать шлак в жидкоподвижном состоянии при оптимальной температуре, что снижает кинетику процесса десульфурации металла. Кроме того, нерегламентированная подача кислорода и алюминия не позволяет эффективно и полно протекать экзотермическим реакциям взаимодействия кислорода и алюминия.

Технический эффект при использовании изобретения заключается в повышении степени десульфурации и нагрева стали.

Указанный технический эффект достигают тем, что способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму.

Расход шлаковой смеси устанавливают по зависимости:
G = K1•(S1 - S2)•M•T;
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки, мас.%;
M - масса стали в ковше, т;
T - температура стали в сталеплавильном агрегате перед выпуском в ковш, oC;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности обработки стали в ковше шлаковой смесью, равный 0,0026 - 0,0074, кг/т2•%•oC.

В качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
известь - 50 - 90
гранулированный алюминий - 1 - 30
плавиковый шпат - остальное
После подачи твердой шлаковой смеси в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху с расходом, определяемым по эмпирической зависимости:
Q = K2•τ•M•G•q•(S1-S2)/t,
где Q - расход кислорода, м3/мин•т стали;
τ - время продувки стали кислородом, мин;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, oC;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия твердой шлаковой смеси и стали в процессе ее продувки кислородом, равный 0,06 - 130, м3oC/т•мин2•%•кг2.

Повышение степени десульфурации и нагрева стали будет происходить вследствие использования твердой шлаковой смеси и необходимых расходных и временных параметров обработки стали в оптимальных пределах. Наличие в шлаковой смеси гранул алюминия предопределяет образование легкоплавкой эвтектики соединений на основе Al2O3. При этом обеспечивается быстрый перевод извести в жидкое состояние вследствие образования и присутствия в расплаве Al2O3 и необходимых локальных температур по объему стали в ковше.

Диапазон значений эмпирического коэффициента K1 в пределах 0,0026 - 0,0074 объясняется физико-химическими закономерностями взаимодействия твердой шлаковой смеси и стали в процессе ее выпуска из сталеплавильного агрегата. При больших значениях не будет происходить десульфурация стали в необходимых пределах. При меньших значениях будет происходить перерасход шлаковой смеси без дальнейшего снижения содержания серы в стали.

Указанный диапазон устанавливают в зависимости от разницы необходимого содержания серы в стали после ее обработки и содержания серы в стали, выпускаемой из сталеплавильного агрегата, а также емкости ковша.

Диапазон значений эмпирического коэффициента K2 в пределах 0,06 - 130 объясняется физико-химическими закономерностями процесса десульфурации стали при ее обработке в ковше под слоем шлака. При меньших значениях будет происходить перерасход кислорода. При больших значениях расход кислорода будет ниже необходимых значений.

Указанный диапазон устанавливают в зависимости от величины необходимого содержания серы в готовой стали и емкости ковша.

Диапазон величин содержания компонентов в твердой шлаковой смеси в заявляемых пределах объясняются физико-химическими закономерностями десульфурации стали. При меньших и больших значениях не будет обеспечиваться необходимая эффективность удаления серы из стали. При больших значениях будет происходить перерасход твердой шлаковой смеси.

Указанные диапазоны устанавливают в зависимости от содержания серы в стали, выпускаемой из сталеплавильного агрегата.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Способ обработки стали в ковше осуществляют следующим образом.

Пример. В процессе обработки сталь с химическим составом, мас.%: C = 0,02 - 0,30; Si = 0,02 - 1,0; Mn = 0,10 - 2,0; Al = 0,02 - 0,10; S = 0,010 - 0,035 выпускают из конвертера в ковш. В процессе выпуска в ковш подают твердую шлаковую смесь. После наполнения металлом ковш подают на установку доводки металла, где в ковш подают алюминиевую проволоку при помощи трайбаппарата диаметром 8 - 12 мм со скоростью 5 - 10 м/с и одновременно продувают кислородом сверху через погружную фурму. После продувки кислородом сталь в ковше продувают нейтральным газом, например, аргоном с расходом 0,3 - 2,0 м3/т•мин в течение 2 - 15 мин.

Расход шлаковой смеси устанавливают по зависимости:
G=K1•(S1-S2)•M•T,
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%;
M - масса стали в ковше, т;
T - температура стали в конвертере перед выпуском, oC;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности процесса обработки стали в ковше шлаковой смесью, равный 0,0026 - 0,0074, кг/т2•%•oC.

Затем в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху с расходом, определяемым по зависимости:
Q = K2•τ•M•G•q•(S1-S2)/t;
где Q - расход кислорода, м3/мин•т стали;
τ - время продувки стали кислородом, мин;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, oC;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия шлаковой смеси и стали в процессе ее продувки кислородом, равный 0,06 - 130, м3oC/т•мин2•%•кг2.

В качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
известь - 50 - 90
гранулированный алюминий - 1 - 30
плавиковый шпат - остальное
В процессе обработки стали в ковше под слоем шлака при подаче алюминия и кислорода в сталь протекают окислительные экзотермические реакции взаимодействия кислорода и алюминия. Эти реакции протекают с большим выделением тепла. Это позволяет нагреть металл и шлак до оптимальных температур и повысить жидкоподвижность и активность шлака, что повышает кинетические процессы десульфурации стали.

В таблице приведены примеры осуществления способа обработки стали в ковше с различными технологическими параметрами.

В первом и пятом примерах не обеспечивается необходимое снижение содержания серы в обработанной стали и ее нагрев.

В оптимальных примерах 2 - 4 обеспечивается необходимая десульфурация стали при одновременном ее нагреве.

Применение изобретения позволяет повысить выход годной стали для непрерывной разливки по химсоставу и температуре на 50 - 60%.

Похожие патенты RU2156308C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Карпов В.Ф.
RU2159290C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Лебедев В.И.
RU2156309C1
СПОСОБ ВЫПЛАВКИ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ В КОНВЕРТЕРЕ 1999
  • Настич В.П.
  • Казаджан Л.Б.
  • Савченко В.И.
  • Пономарев Б.И.
  • Таран В.Г.
  • Щелканов В.С.
  • Лебедев В.И.
RU2154679C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2007
  • Наконечный Анатолий Яковлевич
  • Урцев Владимир Николаевич
  • Хабибулин Дим Маратович
  • Шмаков Антон Владимирович
RU2386704C2
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Лебедев В.И.
RU2154678C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2001
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Соколов А.А.
  • Синюц В.И.
  • Анисимов И.Н.
  • Аглямова Г.А.
  • Мамышев В.А.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Суханов Ю.Ф.
  • Хребин В.Н.
  • Балабанов Ю.М.
  • Захаров Д.В.
RU2185448C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Мазуров В.М.
RU2154677C1
ШЛАКОВАЯ СМЕСЬ ДЛЯ ОБРАБОТКИ СТАЛИ В КОВШЕ 1998
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Лебедев В.И.
RU2138562C1
СПОСОБ ПОЛУЧЕНИЯ ПОДШИПНИКОВОЙ СТАЛИ 2001
  • Носов С.К.
  • Кузовков А.Я.
  • Крупин М.А.
  • Полушин А.А.
  • Фетисов А.А.
  • Ильин В.И.
  • Петренко Ю.П.
  • Данилин Ю.А.
  • Зажигаев П.А.
  • Гейнц А.Г.
  • Виноградов С.В.
RU2200198C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОЙ СТАЛИ 1998
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Полушин А.А.
  • Чернушевич А.В.
  • Ильин В.И.
  • Фетисов А.А.
  • Пилипенко В.Ф.
  • Исупов Ю.Д.
  • Виноградов С.В.
RU2139943C1

Иллюстрации к изобретению RU 2 156 308 C1

Реферат патента 2000 года СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали. Технический результат - повышение степени десульфурации и нагрева стали. Способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата (СА) в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси (ШС). Расход (ШС) устанавливают по зависимости: G = K1•(S1 - S2)•M•T, (кг/т стали), где S1 - содержание S в стали, сливаемой в ковш из СА, мас.%; S2 - необходимое содержание S в стали после ее обработки в ковше, мас.%; М - масса стали в ковше, т; Т - температура стали в (СА) перед выпуском, oС; К1 - эмпирический коэффициент, равный 0,0026-0,0074, кг/т2•%°С. Затем в ковш подают алюминиевую проволоку (АП) и продувают сталь кислородом сверху с расходом, определяемым по зависимости: Q = K2•τ•M•G•q(S1-S2)/t, м3/мин•т стали, где τ - время продувки стали кислородом, мин; q - расход (АП), кг/т стали; t -температура стали в ковше при начале обработки, °С; K2 - эмпирический коэффициент, равный 0,06-130, м3•°С/т•мин2•%•кг2. В качестве (ШС) используют твердую (ШС), состоящую, мас.%: известь 50-90, гранулированный алюминий 1-30; плавиковый шпат - остальное. 1 табл.

Формула изобретения RU 2 156 308 C1

Способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму, отличающийся тем, что расход шлаковой смеси устанавливают по эмпирической зависимости
G = К1•(S1-S2)•М•Т,
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%;
М - масса стали в ковше, т;
Т - температура стали в сталеплавильном агрегате перед выпуском в ковш, oC;
К1 - эмпирический коэффициент, учитывающий физико-химические закономерности обработки стали в ковше шлаковой смесью, равный 0,0026 - 0,0074, кг/т2•%•oC,
при этом в качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - Остальное
после подачи твердой шлаковой смеси в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху с расходом, определяемым по эмпирической зависимости:
Q = K2•τ•M•G•q•(S1-S2)/t,
где Q - расход кислорода, м3/мин•т стали;
τ - время продувки стали кислородом, мин;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, oC;
К2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия твердой шлаковой смеси и стали в процессе ее продувки кислородом, равный 0,06 - 130, м3oC/т•мин2•%•кг2.

Документы, цитированные в отчете о поиске Патент 2000 года RU2156308C1

КОЛПАКОВ С.В
и др
Технология производства стали в современных конвертерных цехах
- М.: Машиностроение, 1991, с.212
RU 94015771 А1, 27.01.1996
RU 95108422 А1, 20.01.1997
Способ производства стали преимущественно трубного сортамента 1989
  • Балабанов Юрий Михайлович
  • Нипадистов Дмитрий Степанович
  • Кириленко Виктор Петрович
  • Щелканов Владимир Сергеевич
  • Кукарцев Владимир Михайлович
  • Вечер Виктор Николаевич
  • Мартыненко Александр Константинович
SU1786111A1
Способ производства стали 1990
  • Денисенко Владимир Петрович
  • Кацман Цезарь Львович
  • Рудашевский Лев Яковлевич
  • Кадарметов Альберт Хаджиевич
  • Максутов Рашат Фасхеевич
  • Иванов Александр Владимирович
  • Волощук Николай Андреевич
  • Ефремов Виктор Григорьевич
SU1766965A1
Способ десульфурации конверторной стали в ковше 1987
  • Брагинец Юрий Федорович
  • Несвет Владимир Васильевич
  • Бродский Сергей Сергеевич
  • Охотский Виктор Борисович
  • Круглик Лариса Ивановна
  • Зигало Иван Никитович
  • Тараненко Святослав Иванович
  • Пустовой Евгений Николаевич
SU1491888A1
US 4586956, 05.06.1986
МЕХАНИЗМ НАВЕСКИ ТРАКТОРА 2013
  • Посметьев Валерий Иванович
  • Латышева Маргарита Александровна
  • Зеликов Владимир Анатольевич
  • Рыбалкин Андрей Сергеевич
RU2542761C1
ИСТОЧНИК СВЕТА 2010
  • Нит Эндрю Саймон
RU2552107C2
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ОЗОНА 2004
  • Потапова Галина Филипповна
  • Блинов Александр Васильевич
  • Касаткин Эдуард Владимирович
  • Клочихин Владимир Леонидович
  • Путилов Александр Валентинович
RU2285061C2
DE 3304762, 09.08.1983
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем 1922
  • Кулебакин В.С.
SU52A1
СПОСОБ ПОЛУЧЕНИЯ 2,4,6-ЗАМЕ1ДЕННОГО S-ТРИАЗИНА 0
SU194098A1

RU 2 156 308 C1

Авторы

Лисин В.С.

Скороходов В.Н.

Настич В.П.

Кукарцев В.М.

Мизин В.Г.

Захаров Д.В.

Филяшин М.К.

Хребин В.Н.

Суханов Ю.Ф.

Нырков Н.И.

Даты

2000-09-20Публикация

1999-07-07Подача