СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ НИЗКОТЕМПЕРАТУРНОГО СИНТЕЗА МЕТАНОЛА Российский патент 2001 года по МПК B01J37/08 B01J23/80 B01J23/86 B01J23/885 B01J23/888 C07C31/04 

Описание патента на изобретение RU2161536C2

Использование: нефтехимия, в частности получение катализаторов для низкотемпературного синтеза метанола.

Сущность изобретения: катализатор получают терморазложением гидроксокарбоната меди-цинка-алюминия и/или хрома, содержащего 1-2 ат% вольфрама, со структурой типа гидроцинкита-аурихальцита при 250-450oC. Состав катализатора соответствует эмпирической формуле
Cu0,30-0,60Zn0,30-0,62W0,01-0,02 Me0,08-0,15On,
где Me - алюминий и/или хром, n - по стехиометрии, 2 таблицы.

Изобретение относится к производству катализаторов для процесса синтеза метанола при низких температурах и давлении.

Для процесса низкотемпературного синтеза используют оксидные медь-цинк-алюминиевые и медь-цинк-хромовые катализаторы (Технология синтетического метанола/Под ред. проф. Караваева М.М.- M.: Химия, 1984, c. 240; Xимические продукты на основе синтез-газа.- M.: Химия, 1987, c. 248). Условия, получения определяют активность, селективность и устойчивость в условиях реакции, а следовательно, и срок службы катализаторов. Как правило, медьсодержащие катализаторы имеют высокую активность и селективность, но низкую устойчивость и, следовательно, низкий срок службы. Кроме того, не всегда воспроизводятся свойства катализаторов из разных партий. Это объясняется тем, что в процессе получения возможно образование нескольких типов оксидных медьсодержащих соединений с разными свойствами.

В работе (RU 2055639 C1, 10.03.96) предлагается получать медьсодержащий катализатор синтеза метанола терморазложением соосажденного смешанного гидроксоалюмината меди-цинка. Способ заключается в следующем.

Смешанное гидроксосоединение меди-цинка и алюминия и/или хрома получают методом соосаждения из смеси 10%-ных растворов нитратов металлов 10%-ным раствором карбоната аммония при постоянном pH = 6,9-7,1, постоянной температуре 70-80oC и непрерывном перемешивании. Осадок отмывают, фильтруют, сушат, затем прокаливают в токе сухого воздуха при 250-450oC и таблетируют с добавлением графита. Полученный катализатор имеет мольное соотношение компонентов Cu:Zn:Me = 30-55:30-62:8-15, где Me - Al и Cr или Al, или Cr.

Этот метод обеспечивает получение катализатора с высокой активностью и селективностью, предоставляет возможность проводить контроль качества катализаторной массы на всех этапах приготовления катализатора, но устойчивость полученного катализатора недостаточно высока.

Целью изобретения является разработка нового способа получения оксидного катализатора, позволяющего обеспечить не только его максимальную активность, селективность и воспроизводимость свойств, но и максимальную устойчивость.

Предлагаемый способ получения катализатора заключается в следующем. Терморазложению при 250-450oC подвергают смешанный гидроксокарбонат меди-цинка-вольфрама-алюминия и/или хрома со структурой типа гидроцинкита-аурихальцита состава
Me(OH)6(CO3)2·nH2O
где Me=Cu+2, Zn+2, W+6, Al и/или Cr.

Получить смешанный гидроксокарбонат указанного состава и структуры можно несколькими методами: соосаждением, распылительной сушкой-прокалкой смеси растворов солей, терморазложением водных растворов аммиачно-карбонатных комплексов меди-цинка в присутствии соединений алюминия и/или хрома. Мы выбрали метод соосаждения из растворов солей меди, цинка, алюминия и/или хрома раствором карбоната или бикарбоната аммония, натрия или калия или их смесью с последующей пропиткой отмытого осадка раствором кремневольфрамовой гетерополикислоты.

Соли меди, цинка, алюминия и/или хрома, предпочтительно нитраты, взятые в количествах, обеспечивающих желательное соотношение компонентов в катализаторе, растворяют в воде и смешивают растворы. Концентрации растворов 100-200 г/л. Отдельно растворяют в воде карбонат или бикарбонат аммония, натрия или калия, концентрация раствора - 100 г/л. Соосаждание смеси растворов нитратов раствором карбоната проводят в реакторе-осадителе при постоянном pH = 6,0 - 8,0, постоянной температуре в интервале 20-85oC и постоянном перемешивании. Химический анализ показывает, что выбранные условия обеспечивают полноту осаждения катионов металлов. Полученный осадок промывают, фильтруют, пропитывают раствором кремневольфрамовой гетерополикислоты и сушат при температуре 80-100oC. Осадок подвергают рентгенофазовому и термическому анализу. На дифрактограмме соединения со структурой типа гидроцинкита-аурихальцита имеется характерный набор максимумов, соответствующий межплоскостным расстояниям, представленным в табл. А.

В зависимости от состава смешанного гидроксосоединения значения d могут слабо отклоняться от приведенных в табл. A.

На термограммах разложению гидроксокарбоната со структурой гидроцинкита-аурихальцита соответствует эндотермический эффект с максимумом при 270-300oC, сопровождающийся потерей около 30% массы.

Полученный осадок с заданной структурой прогревают в токе воздуха или инертного газа при 250-450oC. При этом получается катализаторная масса в виде порошка. Порошок катализатора таблетируют и проводят измерение каталитической активности.

Измерение каталитической активности проводят в проточно-циркуляционных установках при атмосферном давлении и при давлении 50 атм. при 220oC.

Реакционная смесь имеет состав CО:CO2:N2:H2= 20:5:5:70. Скорость реакции синтеза метанола при атмосферном давлении на разных образцах катализаторов сравнивали при постоянной концентрации метанола 1·10-3 об.%. Объемная скорость подачи сырья при испытании под давлением 50 атм. - 20000 ч-1. Термическую устойчивость катализаторов характеризовали коэффициентом термической устойчивости (КТУ) - отношением скорости реакции после перегрева катализатора в реакционной среде при 380oC в течение 2 ч к первоначальной скорости реакции.

Отличительным признаком способа является использование для получения катализатора смешанного гидроксокарбоната меди-цинка-вольфрама-хрома и/или алюминия со структурой типа гидроцинкита-аурихальцита.

Сущность способа иллюстрируется следующими примерами.

Пример 1. Терморазложению подвергают гидроксокарбонат меди-цинка-вольфрама-хрома с соотношением компонентов Cu:Zn:W:Cr=30:60:1:9 (здесь и далее соотношение атомное).

Для получения гидроксосоединения заданного состава проводят соосаждение смеси 10%-ных водных растворов нитратов: 517 мл нитрата меди, 1046 мл нитрата цинка, 198 мл нитрата хрома.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Для приготовления растворов и отмывки осадка используют дистиллированную или деминерализованную воду.

Осаждение проводят при 70-80oC, pH = 6,9-7,1, при постоянном перемешивании. Полученный осадок отмывают, фильтруют и сушат на воздухе при 80-100oC 10-12 ч. Высушенный образец пропитывают 120 мл водного раствора кремневольфрамовой гетерополикислоты (ГПК) H4[SiW12O40] , содержащего 2,4 г ГПК, что обеспечивает заданное содержание вольфрама в ГПК. Образец высушивают и анализируют методами РФА и ДТА. Получается гидроксокарбонат меди-цинка-хрома со структурой типа гидроцинкита-аурихальцита. Результаты фазового анализа приведены в табл. 1. Терморазложение проводят при 450oC в течение 4 ч в токе сухого воздуха. Полученную катализаторную массу в виде порошка смешивают с графитом, таблетируют и помещают в установку для измерения каталитической активности. Результаты измерения каталитической активности приведены в табл. 2.

Пример 2. Терморазложению подвергают гидроксокарбонат меди-цинка-марганца-хрома с соотношением Cu:Zn:W:Al=45:45:1:9.

Для получения гидроксосоединения заданного состава проводят осаждение смеси 10%-ных растворов солей: 775 мл нитрата меди, 784 мл нитрата цинка, 177 мл нитрата алюминия.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Осаждение и все последующие операции проводят как в примере 1, но температура терморазложения - 250oC. Результаты фазового анализа и каталитического свойства приведены в табл. 1 и 2.

Пример 3. Терморазложению подвергают гидроксосоединение меди-цинка-марганца-алюминия с соотношением Cu:Zn:W:Cr=60:30:2:8.

Для получения гидроксосоединения заданного состава проводят осаждение смеси 10%-ных растворов солей: 1033 мл нитрата меди, 523, мл нитрата цинка и 176 мл нитрата хрома.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Осаждение и все последующие операции проводят как в примере 1, но количество ГПК в водном растворе - 4,8 г. Температура терморазложения - 350oC. Результаты фазового анализа и каталитические свойства приведены в табл. 1 и 2.

Пример 4. Терморазложению подвергают гидроксосоединение меди-цинка-вольфрама-алюминия-хрома с соотношением Cu:Zn:W:Al:Cr=50:34:1:8:7.

Для получения гидроксосоединения заданного состава проводят осаждение смеси 10%-ных растворов солей: 861 мл нитрата меди, 593 мл нитрата цинка, 157 мл нитрата алюминия и 153 мл нитрата хрома.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Осаждение и все последующие операции проводят как в примере 1, но температура терморазложения - 350oC. Результаты фазового анализа и каталитические свойства приведены в табл. 1 и 2.

Как видно из табл. 2, медь-цинк-вольфрам-алюмохромовые оксидные катализаторы, полученные по предлагаемому методу, характеризуются высокой каталитической активностью и устойчивостью.

Предложенный способ получения обеспечивает не только высокую активность, селективность и устойчивость катализаторов, но и предоставляет возможность проводить контроль качества катализаторной массы на всех этапах приготовления катализатора, что позволяет добиваться высокой воспроизводимости свойств для разных партий катализаторов.

Источники информации
1. Технология синтетического метанола /Под ред. проф. Караваева М.М.- М. : Химия, с. 240, 1984.

2. Химические продукты на основе синтез-газа.- М.: Химия, с. 248, 1987.

3. Патент Российской Федерации N 2055639. Бюл. N 7, 10.03.96.

Похожие патенты RU2161536C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА КОНВЕРСИИ ОКСИДА УГЛЕРОДА ВОДЯНЫМ ПАРОМ 1997
  • Юрьева Т.М.
  • Минюкова Т.П.
  • Давыдова Л.П.
  • Демешкина М.П.
  • Волкова Г.Г.
  • Итенберг И.Ш.
  • Плясова Л.М.
RU2118910C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПРОЦЕССА КОНВЕРСИИ ОКСИДА УГЛЕРОДА ВОДЯНЫМ ПАРОМ 1993
  • Юрьева Т.М.
  • Минюкова Т.П.
  • Давыдова Л.П.
  • Макарова О.В.
  • Плясова Л.М.
  • Ануфриенко В.Ф.
RU2046656C1
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛФОРМИАТА, КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА 2000
  • Волкова Г.Г.
  • Демешкина М.П.
  • Кустова Г.Н.
  • Лихолобов В.А.
  • Минюкова Т.П.
  • Сименцова И.И.
  • Хасин А.В.
  • Юрьева Т.М.
  • Штерцер Н.В.
RU2185370C1
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ СПИРТОВ C-C 1992
  • Волкова Г.Г.
  • Юрьева Т.М.
  • Плясова Л.М.
  • Минюкова Т.П.
  • Прудникова О.Ю.
  • Макарова О.В.
  • Ануфриенко В.Ф.
RU2041196C1
КАТАЛИЗАТОР И СПОСОБ ПАРОВОЙ КОНВЕРСИИ МОНООКСИДА УГЛЕРОДА 2005
  • Баронская Наталья Алексеевна
  • Бученко Наталья Анатольевна
  • Демешкина Маргарита Петровна
  • Итенберг Изабелла Шендеровна
  • Корж Евгения Владимировна
  • Минюкова Татьяна Петровна
  • Хасин Александр Александрович
  • Юрьева Тамара Михайловна
RU2281805C1
КАТАЛИЗАТОР И СПОСОБ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ АЦЕТИЛЕНОВЫХ УГЛЕВОДОРОДОВ 2000
  • Хасин А.А.
  • Молчанов В.В.
  • Демешкина М.П.
  • Итенберг И.Ш.
  • Кустова Г.Н.
  • Зайцева Н.А.
  • Пармон В.Н.
  • Плясова Л.М.
  • Чермашенцева Г.К.
  • Юрьева Т.М.
  • Буянов Р.А.
RU2180611C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОЙ ПО ВОДОРОДУ ГАЗОВОЙ СМЕСИ ИЗ ДИМЕТИЛОВОГО ЭФИРА 2000
  • Беляев В.Д.
  • Волкова Г.Г.
  • Гальвита В.В.
  • Демешкина М.П.
  • Итенберг И.Ш.
  • Минюкова Т.П.
  • Семин Г.Л.
  • Собянин В.А.
  • Юрьева Т.М.
RU2165790C1
СПОСОБ ПОЛУЧЕНИЯ 2-МЕТИЛ-1,4 НАФТОХИНОНА И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Матвеев К.И.
  • Жижина Е.Г.
  • Одяков В.Ф.
RU2162837C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ И ИХ КИСЛОРОДСОДЕРЖАЩИХ ПРОИЗВОДНЫХ С ЕГО ИСПОЛЬЗОВАНИЕМ 2003
  • Итенберг И.Ш.
  • Пармон В.Н.
  • Сипатров А.Г.
  • Хасин А.А.
  • Чермашенцева Г.К.
  • Юрьева Т.М.
RU2227067C1
СПОСОБ ПОЛУЧЕНИЯ ЦЕОЛИТА 2000
  • Дударев С.В.
  • Ечевский Г.В.
  • Токтарев А.В.
  • Аброськин И.Е.
  • Александров А.Б.
  • Ядрышников М.В.
RU2174952C1

Иллюстрации к изобретению RU 2 161 536 C2

Реферат патента 2001 года СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ НИЗКОТЕМПЕРАТУРНОГО СИНТЕЗА МЕТАНОЛА

Изобретение относится к производству катализаторов для процесса низкотемпературного синтеза метанола. Сущность изобретения: катализатор получают терморазложением при 250-450°С смешанного гидроксокарбоната меди-цинка-вольфрама-хрома и/или алюминия со структурой типа гидроцинкита-аурихальцита. Катализатор имеет состав (мольные доли): Сu - 0,30-0,60; Zn - 0,30-0,62; W - 0,01-0,02; Ме+3 - 0,08-0,15, О - n, где Me - Al+Cr или Al; n - по стехиометрии. Технический результат - разработка нового способа получения оксидного катализатора, позволяющего обеспечить не только его максимальную активность и селективность, но и максимальную устойчивость. 3 табл.

Формула изобретения RU 2 161 536 C2

Способ получения катализатора для низкотемпературного синтеза метанола терморазложением при 250 - 450oC смешанного гидроксосоединения меди-цинка-алюминия и/или хрома с последующим таблетированием, отличающийся тем, что в качестве смешанного гидроксосоединения используют гидроксокарбонат меди-цинка-вольфрама-алюминия и/или хрома со структурой типа гидроцинкита-аурихальцита, при этом получают катализатор, состав которого соответствует эмпирической формуле
Cu0,30-0,60Zn0,30-0,62W0,01-0,02Me0,08-0,15On,
где Ме - алюминий и/или хром;
n - по стехиометрии.

Документы, цитированные в отчете о поиске Патент 2001 года RU2161536C2

RU 2055639 C1, 10.03.1996
Способ приготовления катализатора для синтеза метанола и конверсии оксида углерода 1987
  • Ильин Александр Павлович
  • Смирнов Николай Николаевич
  • Широков Юрий Георгиевич
  • Низов Геннадий Алексеевич
  • Хоменкова Ольга Аркадьевна
SU1524920A1
Катализатор для получения метанола и высших спиртов 1982
  • Витторио Фатторе
  • Бруно Нотари
  • Альберто Паджини
  • Винченцо Лагана
SU1279516A3
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА 1994
  • Горошко Олег Николаевич[Ua]
  • Калинченко Федор Владимирович[Ua]
  • Овсиенко Ольга Леонидовна[Ua]
  • Родин Леонид Михайлович[Ua]
  • Рыжак Игорь Александрович[Ua]
RU2100069C1
Индивидуальная фильтрующая маска с бактерицидной обработкой воздуха 2020
  • Багаева Ольга Львовна
  • Багаев Максим Сергеевич
RU2729629C1
Линейный вращающийся трансформатор 1978
  • Хрущев Виталий Васильевич
  • Павлов Олег Александрович
  • Смирнов Владимир Иванович
  • Рукшин Евгений Семенович
  • Кутин Рудольф Алексеевич
  • Ромашкин Рудольф Николаевич
SU868943A1
Технология синтетического метанола
/Под ред.проф
КАРАВАЕВА М.M
- М.: Химия, с.240, 1984
Химические продукты на основе синтез-газа
- М.: Химия, с.248, 1987.

RU 2 161 536 C2

Авторы

Юрьева Т.М.

Минюкова Т.П.

Давыдова Л.П.

Демешкина М.П.

Волкова Г.Г.

Итенберг И.Ш.

Плясова Л.М.

Даты

2001-01-10Публикация

1997-03-26Подача