СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МИКРОСТРУКТУРЫ МЕТАЛЛА Российский патент 2001 года по МПК G01N1/32 

Описание патента на изобретение RU2163364C1

Изобретение относится к исследованию свойств материалов, а именно к неразрушающему контролю (анализу) микроструктуры металла оборудования тепловых электростанций.

Известен способ неразрушающего контроля микроструктуры непосредственно на оборудовании. Для этого на выбранном участке оборудования, например на растянутой зоне гиба паропровода, подготавливают шлиф по общеизвестной методике, состоящей в шлифовании, полировании и травлении. Затем с помощью переносного микроскопа ММУ-3 с фотонасадкой МФН контролируют микроструктуру шлифа, т.е. металла паропровода [1].

Недостатком этого способа является невозможность проведения контроля в стесненных местах при вибрации оборудования и запыленностью атмосферы котельных и других цехов тепловых электростанций.

Наиболее близким по технической сущности к предлагаемому изобретению является способ неразрушающего контроля (анализа) микроструктуры непосредственно на оборудовании с помощью пластиковых реплик.

Для этого на шлиф, подготовленный по общеизвестной методике на выбранном для исследования участке оборудования, наносят пластиковый материал, в частности ленту для магнитной записи (магнитную ленту) в сочетании с растворителем-ацетоном. На блестящую поверхность магнитной ленты пипеткой наливают несколько капель ацетона так, чтобы он равномерно покрыл всю поверхность ленты, после чего ленту немедленно прижимают к поверхности шлифа на 2-3 сек. Выдержка ленты на шлифе 1 мин. Снятую ленту сразу же во избежание коробления матовой стороной приклеивают к стеклянной пластинке. Для повышения контраста пластиковую реплику оттеняют хромом, алюминием, золотом, серебром или углеродом; угол напыления 25-30o. Оттенение производится на установках типа ВУП-4, ВУП-2К, ЭВП-2. Просмотр и фотографирование пластиковых реплик проводят в лабораторных условиях на стационарном оптическом металлографическом микроскопе [2].

Необходимость оттенения пластиковой реплики усложняет процесс получения реплики, т. к. для оттенения требуется дорогостоящее специализированное вакуумное оборудование. В этом заключается недостаток известного технического решения по прототипу.

Задачей изобретения является упрощение процесса получения реплики путем исключения оттенения. Поскольку процесс получения реплики является составной частью контроля микроструктуры, упрощение процесса получения реплики приведет и к упрощению неразрушающего контроля микроструктуры металла в целом.

Поставленная задача решается тем, что реплику получают металлическую, в частности медную. Для этого на поверхность шлифа наносят пипеткой материал в виде какой-либо медной соли в сочетании с растворителем-водой, т.е. медьсодержащий раствор. Концентрация раствора по меди может варьироваться в широком пределе - от 5 до 30 г/л. В пересчете на сульфат меди CuSO4 · 5Н2O эта концентрация соответствует 19,6-117,8 г/л, в пересчете на хлорид меди CuCl2·2H2O - 13,4-80,4 г/л, и т.д. Нанесенный на поверхность медьсодержащий раствор выдерживают в течение 1-2 мин. За это время на поверхности шлифа за счет реакции цементации (контактного обмена) кристаллизуется пленка меди. Известно, что при электролитическом осаждении металла (электроосаждении), а цементация является частным случаем электролитического осаждения, первоначальный слой металла, кристаллизующийся непосредственно на поверхности подложки (в данном случае на поверхности шлифа), полностью воспроизводит микроструктуру подложки. Поэтому полученная в результате реакции цементации на поверхности шлифа медная пленка и является репликой - ее поверхность, соприкасавшаяся с поверхностью шлифа, полностью повторяет микрорельеф поверхности шлифа, т.е. отображает микроструктуру исследуемого металла.

После указанной выше выдержки в течение 1-2 мин оставшийся на поверхности медной пленки раствор удаляют просушиванием фильтровальной бумагой, промывают этиловым спиртом и отделяют от поверхности шлифа.

Отделение медной пленки от поверхности шлифа проводят по известному методу, который практикуется в электронной микроскопии. На поверхность медной пленки, находящейся на шлифе, наносят несколько капель коллодиевого раствора. После высыхания растворителя образовавшийся полимерный слой-основу снимают при помощи пинцета. Вместе с полимерной основой от шлифа легко отделяется и медная пленка-реплика.

Просмотр и фотографирование медной реплики, так же как и пластиковой по прототипу, проводят в лабораторных условиях на стационарном оптическом микроскопе.

Поскольку получаемая по предлагаемому способу реплика является металлической, она обеспечивает присущую металлам отражательную способность и контраст без оттенения. Таким образом, поставленная задача решается.

Пример осуществления
Контроль микроструктуры проведен на главном паропроводе котлоагрегата N 1 Павлодарской ТЭЦ. Материал паропровода - сталь 12Х1МФ. Размер трубы ⊘ 273х36, наработка - 197 тысяч ч.

Шлиф подготовлен на вершине растянутой зоны гиба по общеизвестной методике. Шлифовку выполняли вручную, применяя последовательно шлифшкурки NN 12, 8 и 5 и заканчивали шлифшкуркой M-40. Полирование проводили пневматической шлифмашинкой, на шпиндель которой был насажен фетровый круг, покрытый пастой ГОИ. После первого полирования для выявления не только микроструктуры, но и микроповрежденности проведена 10-кратная переполировка с травлением в 4%-ном растворе азотной кислоты в этиловом спирте. После этого поверхность шлифа промыли этиловым спиртом и просушили фильтровальной бумагой. Размер подготовленного шлифа 40х40 мм.

Приготовили три водных раствора сульфата меди концентрацией в пересчете на медь: минимальной 5 г/л, максимальной 30 г/л и средней 17,5 г/л.

Пипеткой на поверхность шлифа каплями нанесли раствор, содержащий 5 г/л меди так, чтобы образовалось пятно раствора диаметром 5 мм и выдержали 2 мин. За это время под пятном раствора образовалась медная пленка бледно-розового цвета. По истечении 2 мин выдержки медную пленку просушили фильтровальной бумагой и промыли этиловым спиртом.

Подобные же операции провели и с растворами, содержащими 17,5 г/л и 30 г/л меди, с той лишь разницей, что первый раствор выдерживали на шлифе 1,5 мин, второй - 1 мин.

На каждую из медных пленок, находящихся на шлифе, при помощи пипетки каплями нанесли 3%-ный раствор коллодия в амилацетате. По истечении 1 ч коллодиевый раствор высох (испарился растворитель). После этого пинцетом полимерный слой-основу отделили от поверхности шлифа - вместе с этой полимерной основой от поверхности шлифа отделились и медные пленки-реплики.

Для сравнения на этом же шлифе получена пластиковая реплика в полном соответствии с прототипом и оттенена металлическим хромом, причем оттенение также выполнено в полном соответствии с прототипом.

Медные реплики и реплика по прототипу просмотрены и сфотографированы в лаборатории металлов АО "Севказэнергоремонт" на оптическом микроскопе МИМ-8М при увеличении 500 раз. Все реплики (и медные, и по прототипу) показали полностью идентичную микроструктуру - феррит и карбиды по границам ферритных зерен. Контраст составляющих микроструктуры и на медных репликах, и на реплике по прототипу одинаков.

Предлагаемый способ прост в осуществлении и может быть использован на тепловых электростанциях для контроля микроструктуры металла непосредственно на оборудовании.

Источники информации
1. Савкив С. В. , Цюпка П.Н., Дармиц М.П., Лямичев А.И. Неразрушающие методы контроля металлов на тепловых электростанциях. М., Энергия, 1974, с. 43.

2. Минц И. И. , Ходыкина Л.Е., Шульгина Н.Г., Носач В.Ф. Метод оценки микроповрежденности металла паропроводов с помощью пластиковых реплик. Теплоэнергетика, 1990, N 6, с. 61-63.

Похожие патенты RU2163364C1

название год авторы номер документа
Способ неразрушающего контроля микроструктуры металла сварного соединения при проведении ремонтных работ 2019
  • Калугин Роман Николаевич
  • Анохов Александр Ефимович
RU2713843C1
Способ неразрушающего контроля микроструктуры металла 2022
  • Калугин Роман Николаевич
RU2780883C1
Способ неразрушающего контроля металла рабочих лопаток турбины, длительно подвергающихся постоянным и переменным эксплуатационным нагрузкам при повышенных температурах 2019
  • Авруцкий Георг Давидович
  • Лазарев Михаил Васильевич
  • Гладштейн Владимир Исаакович
  • Любимов Артем Александрович
RU2706814C1
Способ изготовления слепков спОВЕРХНОСТи ОбРАзцОВ пОлЕзНыХ иСКОпА-ЕМыХ 1978
  • Гончаренко Вячеслав Александрович
  • Пимоненко Николай Александрович
  • Шлопоченко Станислав Тимофеевич
SU819612A1
Способ неразрушающего металлографического контроля 1989
  • Панасенко Людмила Ивановна
  • Савченко Людмила Александровна
  • Костенко Анатолий Александрович
  • Башнин Юрий Алексеевич
  • Павленко Ольга Игоревна
SU1617320A1
Способ изготовления образца для исследования методом электронной микроскопии 1988
  • Дорофеева Элеонора Николаевна
  • Самойленко Вадим Георгиевич
  • Хорунов Виктор Федорович
  • Григоренко Георгий Михайлович
  • Таранова Татьяна Глебовна
  • Табелев Владислав Дмитриевич
  • Таяновская Александра Валентиновна
  • Швачко Валентин Иванович
  • Писарев Анатолий Николаевич
  • Кезик Виталий Яковлевич
SU1589109A1
СПОСОБ КОНТРОЛЯ РАБОЧЕГО СОСТОЯНИЯ ЛОПАТОК РОТОРА ТУРБИН ГТД 2010
  • Серков Андрей Владимирович
  • Лоншакова Оксана Николаевна
  • Тихомиров Александр Емельянович
  • Бабич Иван Игнатьевич
  • Гейкин Валерий Александрович
  • Пузанов Сергей Георгиевич
  • Фокин Георгий Анатольевич
  • Кропанёв Сергей Афанасьевич
  • Матвеев Андрей Николаевич
RU2426086C1
Способ изготовления реплик с керамических материалов для исследования в электронном микроскопе 1981
  • Бочкарева Людмила Григорьевна
  • Усачев Владимир Павлович
  • Христич Евгений Ефимович
SU960572A1
СПОСОБ ИССЛЕДОВАНИЯ СТРУКТУРЫ ДИНАМИЧЕСКИ ДЕФОРМИРОВАННЫХ МЕТАЛЛОВ 1993
  • Атрошенко С.А.
  • Жигачева Н.И.
  • Мещеряков Ю.И.
  • Томилин М.Г.
RU2080587C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОННЫХ ЭЛЕКТРОПРОВОДЯЩИХ ДОРОЖЕК НА ПОДЛОЖКАХ АНОДИРОВАННОГО АЛЮМИНИЯ 2019
  • Деревяшкин Сергей Владимирович
  • Соболева Елена Александровна
  • Шелковников Владимир Владимирович
  • Орлова Наталья Алексеевна
RU2739750C1

Иллюстрации к изобретению RU 2 163 364 C1

Реферат патента 2001 года СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МИКРОСТРУКТУРЫ МЕТАЛЛА

Способ неразрушающего контроля микроструктуры металла включает подготовку шлифа на исследуемой поверхности оборудования, получение реплики со шлифа посредством нанесения на поверхность шлифа материала в сочетании с растворителем и выдержки этого материала на шлифе, отделение полученной реплики от шлифа и последующее изучение реплики на стационарном микроскопе, при этом репликой является пленка меди, получающаяся из нанесенного на поверхность шлифа водного раствора медной соли концентрацией 5-30 г/л по меди. Техническим результатом является упрощение процесса. 1 табл.

Формула изобретения RU 2 163 364 C1

Способ неразрушающего контроля микроструктуры металла, включающий подготовку шлифа на исследуемой поверхности оборудования, получение реплики со шлифа посредством нанесения на поверхность шлифа материала в сочетании с растворителем и выдержки этого материала на шлифе, отделение полученной реплики от шлифа и последующее изучение реплики на стационарном микроскопе, отличающийся тем, что репликой является пленка меди, получающаяся из нанесенного на поверхность шлифа водного раствора медной соли концентрацией 5 - 30 г/л по меди.

Документы, цитированные в отчете о поиске Патент 2001 года RU2163364C1

МИНЦ И.И
Метод оценки микроповрежденности металла паропроводов с помощью пластиковых реплик
- Теплоэнергетика, 1990, № 6, с.61 - 63
0
SU205052A1
Способ отделения металлической пленки от подложки при изготовлении образцов для электронной микроскопии 1989
  • Барташевич Михаил Иванович
  • Васьковский Владимир Олегович
  • Лепаловский Владимир Николаевич
SU1626115A1
СПОСОБ ИЗГОТОВЛЕНИЯ РЕПЛИК ИЗ МАТЕРИАЛОВ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ДЛЯ ИССЛЕДОВАНИЯ В ЭЛЕКТРОННОМ МИКРОСКОПЕ 1994
  • Григорьева Л.Д.
RU2090857C1
JP 55082943 A, 23.06.1980
JP 03013861 A, 22.01.1991.

RU 2 163 364 C1

Авторы

Артамонов Вадим Владимирович

Артамонов Владимир Павлович

Даты

2001-02-20Публикация

1999-06-03Подача