Предлагаемое изобретение относится к области ракетной техники и может быть использовано при разработке систем теленаведения управляемых ракет.
В системах теленаведения бортовые устройства получают информацию от источника, находящегося вне летательного аппарата (ЛА). Для выработки сигналов наведения необходимо определять положение в пространстве ЛА и цели. Простейшим методом теленаведения является метод совмещения. Поскольку этот метод определяется условием равенства угловых координат цели Φц и ракеты Φp, то ошибка наведения определяется по следующей формуле:
ε = Φц-Φp
Для формирования сигнала этой ошибки необходимо иметь устройства для измерения только угловых координат цели и ракеты. Так как в конечном итоге точность наведения характеризуется минимальным расстоянием ракеты от цели - промахом, то и текущую ошибку наведения следует определять по линейному отклонению ракеты от требуемой кинематической траектории. В данном случае это отклонение определяется по следующей формуле:
h = r•(Φц-Φр),
где r - расстояние от ракеты до пункта управления.
Такое выражение ошибки требует измерения дальности до ракеты, поэтому очень часто определяют линейную ошибку наведения по следующей формуле:
h = R(t)•(Φц-Φp),
где R(t) - заранее заданная функция времени, приближенно соответствующая дальности до ракеты.
Известной системой теленаведения ракеты является система, включающая блок выработки команд [1], обеспечивающий вышеприведенный принцип формирования команд. Недостатком [1] является то, что определение дальности до ракеты осуществляется по заранее заданной функции R(t), лишь приближенно равной дальности до ракеты, что приводит к снижению точности системы теленаведения. При стрельбе зенитными ракетами по скоростным воздушным целям дальность до ракеты зависит не только от текущего полетного времени, но и от параметров траектории ракеты-высоты полета и угловой скорости линии визирования ракеты. Параметры траектории в известной системе теленаведения [1] не учитываются, что приводит к ошибкам формирования сигнала дальности и, как следствие, к возрастанию промаха. Известный метод определения баллистических характеристик интегрированием в вычислительной системе уравнений движения ракеты позволяет свести к минимуму ошибки определения баллистических характеристик, в том числе и дальности, при условии, что точно известны параметры уравнений, прежде всего аэродинамические коэффициенты ракеты. Указанное условие трудновыполнимо, так как определение аэродинамических коэффициентов является сложной задачей. Измерение дальности до ракеты позволяет существенно повысить точность наведения.
За прототип принята система теленаведения, структурная схема которой приведена в [2]. В общем случае для решения задачи теленаведения на командном пункте необходимо знать координаты ракеты и цели относительно командного пункта. В системе [2] это обеспечивается благодаря использованию двух радиолокационных станций, что позволяет обеспечить сопровождение ракеты и цели по угловым координатам и дальности. Недостатками прототипа является низкая помехозащищенность системы теленаведения и то, что определение дальности с помощью радиолокационных средств для быстроперемещающихся, малогабаритных или низколетящих ЛА происходит с большой ошибкой, которая повышает флуктуационную составляющую ошибки наведения ракеты. Под действием естественных и организованных противником помех возможны прерывания сигнала дальности до ракеты, что приводит к размыканию контура управления и срыву наведения ракеты.
Поэтому задачей предлагаемого изобретения является повышение точности и помехозащищенности системы теленаведения, которая достигается за счет фильтрации сигнала измеренной дальности до ракеты и вычисления статистических оценок дальности и скорости ракеты.
Поставленная задача достигается тем, что в известную систему теленаведения, включающую устройство измерения дальности и угловых координат цели, выходы которого соединены с входами устройства выработки команд, устройство измерения дальности и угловых координат ракеты, выход по угловым координатам которого соединен с входом устройства выработки команд, включены блок формирования программной функции, приближенно равной касательному ускорению ракеты, три сумматора, два усилителя и два интегратора, при этом входы первого сумматора соединены с выходом по дальности устройства измерения дальности и угловых координат ракеты и выходом второго интегратора; выход первого сумматора соединен с входами первого и второго усилителей; выход второго усилителя и выход блока формирования программной функции, приближенно равной касательному ускорению ракеты, соединены с входами второго сумматора, выход второго сумматора соединен с входом первого интегратора; выходы первого интегратора и первого усилителя соединены со входами третьего сумматора, выход третьего сумматора соединен со входом второго интегратора; выход второго интегратора соединен со входом устройства выработки команд.
Структурная схема предлагаемой системы теленаведения приведена на чертеже. На данной структурной схеме введены следующие обозначения:
1 - первый сумматор, 2 - второй сумматор, 3 - третий сумматор,
4 - первый интегратор, 5 - второй интегратор, 6 - первый усилитель,
7 - второй усилитель, 8 - блок формирования программной функции, приближенно равной касательному ускорению ракеты,
9 - устройство измерения дальности и угловых координат ракеты, 10 - устройство измерения дальности и угловых координат цели,
11 - устройство выработки команд,
Φp,Φц - угловые координаты цели и ракеты,
D
D
- программная, заранее заданная функция, приближенно равная касательному ускорению ракеты,
К1, К2 - коэффициенты усиления,
Vр - производная по дальности, определяемая интегрированием знак интегрирования) значения
Dp - оценка дальности до ракеты, определяемая интегрированием значения Vp+K1•(D
Предлагаемая система теленаведения, структурная схема которой приведена на фигуре, включает устройство измерения дальности и угловых координат цели 10, выходы которого соединены со входами устройства выработки команд 11, устройство измерения дальности и угловых координат ракеты 9, выход по угловым координатам которого соединен с входом устройства выработки команд, блок формирования программной функции, приближенно равной касательному ускорению ракеты 8, три сумматора, два усилителя и два интегратора, при этом входы первого сумматора 1 соединены с выходом по дальности устройства измерения дальности и угловых координат ракеты и выходом второго интегратора 5; выход первого сумматора соединен со входами первого 6 и второго 7 усилителей; выход второго усилителя и выход блока формирования программной функции, приближенно равной касательному ускорению ракеты, соединены со входами второго сумматора 2, выход второго сумматора соединен с входом первого интегратора 4; выходы первого интегратора и первого усилителя соединены со входами третьего сумматора 3, выход третьего сумматора соединен с входом второго интегратора; выход второго интегратора соединен с входом устройства выработки команд.
Предлагаемая система теленаведения обеспечивает формирование сигналов оценки дальности до ракеты, под которой понимается сглаженная и отфильтрованная дальность до ракеты, в соответствии со следующей системой дифференциальных по времени t уравнений:
Вышеприведенные уравнения представляют собой уравнения оптимальной фильтрации сигнала по Калману-Бьюсси [3]. Их реализация в системе теленаведения обеспечивает эффективное подавление шумов по каналу дальности и, тем самым, повышение точности наведения ракеты.
Работа предлагаемой системы теленаведения в соответствии с приведенными выше уравнениями осуществляется в следующем порядке. Измеренные с помощью устройства измерения дальности и угловых координат цели (10) значения D
При прерывании процесса измерения дальности коэффициенты усиления К1, К2 обнуляются. В этом случае предлагаемая система теленаведения обеспечивает экстраполяцию сигнала дальности путем двойного интегрирования программного сигнала касательного ускорения ракеты.
Предлагаемая система теленаведения может быть реализована средствами цифровой вычислительной техники. При реализации системы в цифровой (дискретной) форме уравнения для выработки сигнала дальности имеют следующий вид, определяющий последовательность операций при работе предлагаемой системы теленаведения:
Dp[n] = D
Vp[n] = V
где на первом шаге вычислений D
Оценки дальности до ракеты и ее скорости, используемые на следующем шаге интегрирования, вычисляются по следующим формулам:
где d - шаг решения.
Указанная последовательность операций при использовании предлагаемой системы теленаведения позволяет повысить точность и помехозащищенность системы в режиме прерывания сигнала дальности до ракеты.
Источники информации
1. Лебедев А.А. и Карабанов В.А. Динамика систем управления беспилотными летательными аппаратами. М.: Машиностроение, 1965, стр. 371 - аналог.
2. Кочетков В. Т. , Половко А.М., Пономарев В.М. Теория систем телеуправления и самонаведения ракет, М.: Наука, 1964, стр. 26 - прототип.
3. Т.Бранер, Г.Зифлинг "Фильтр Калмана-Бьюсси", М.: Наука, 1982.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА НАВЕДЕНИЯ ТЕЛЕУПРАВЛЯЕМОЙ РАКЕТЫ | 2000 |
|
RU2191345C2 |
СПОСОБ НАВЕДЕНИЯ РАКЕТЫ | 2009 |
|
RU2426969C2 |
СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ | 2001 |
|
RU2205360C2 |
СПОСОБ НАВЕДЕНИЯ ТЕЛЕУПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2000 |
|
RU2192605C2 |
СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ И СИСТЕМА НАВЕДЕНИЯ РАКЕТЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2241950C1 |
СПОСОБ ВВОДА РАКЕТЫ В ЗОНУ ЛУЧА И КОМПЛЕКС ТЕЛЕУПРАВЛЯЕМОЙ В ЛУЧЕ РАКЕТЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2003 |
|
RU2257522C1 |
СПОСОБ ИСПЫТАНИЯ ТЕЛЕУПРАВЛЯЕМОЙ РАКЕТЫ | 2000 |
|
RU2190184C2 |
СПОСОБ ВВОДА В ЗОНУ УПРАВЛЕНИЯ РАКЕТЫ, ВРАЩАЮЩЕЙСЯ ПО УГЛУ КРЕНА, И РАКЕТНЫЙ КОМПЛЕКС | 2007 |
|
RU2362107C2 |
СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ И СИСТЕМА НАВЕДЕНИЯ РАКЕТЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2241951C1 |
СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ (ВАРИАНТЫ) И СИСТЕМА УПРАВЛЕНИЯ РАКЕТОЙ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2005 |
|
RU2291384C1 |
Изобретение относится к ракетной технике и может быть использовано при разработке систем теленаведения управляемых ракет. Технический результат заключается в повышении точности и помехозащищенности системы теленаведения, которая достигается за счет фильтрации сигнала измеренной дальности до ракеты и вычисления статистических оценок дальности и скорости ракеты. Система содержит устройство измерения дальности и угловых координат цели, устройство измерения дальности и угловых координат ракеты, устройство выработки команд, блок формирования программной функции, приближенно равной касательному ускорению ракеты, три сумматора, два усилителя и два интегратора. 1 ил.
Система теленаведения, включающая устройство измерения дальности и угловых координат цели, выходы которого соединены со входами устройства выработки команд, устройство измерения дальности и угловых координат ракеты, выход по угловым координатам которого соединен со входом устройства выработки команд, отличающаяся тем, что в систему теленаведения включены блок формирования программной функции, приближенно равной касательному ускорению ракеты, три сумматора, два усилителя и два интегратора, при этом входы первого сумматора соединены с выходом по дальности устройства измерения дальности и угловых координат ракеты и выходом второго интегратора, выход первого сумматора соединен со входами первого и второго усилителей, выход второго усилителя и выход блока формирования программной функции, приближенно равной касательному ускорению ракеты, соединены со входами второго сумматора, выход второго сумматора соединен со входом первого интегратора, выходы первого интегратора и первого усилителя соединены со входами третьего сумматора, выход третьего сумматора соединен со входом второго интегратора, выход второго интегратора соединен со входом устройства выработки команд.
КОЧЕТКОВ В.Т | |||
и др | |||
Теория систем телеуправления и самонаведения ракет | |||
- М.: Наука, 1964, с.26 | |||
СПОСОБ ФОРМИРОВАНИЯ КОМАНД УПРАВЛЕНИЯ ВРАЩАЮЩЕЙСЯ РАКЕТОЙ, НАВОДЯЩЕЙСЯ ПО ЛУЧУ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2114372C1 |
US 4721270 A, 26.01.1988 | |||
ЛЕБЕДЕВ A.A., КАРАБАНОВ В.А | |||
Динамика систем управления беспилотными летательными аппаратами | |||
- М.: Машиностроение, 1965, с.371. |
Авторы
Даты
2001-08-27—Публикация
2000-02-24—Подача